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Abstract

We study Poincaré series and pressure as functions of multipliers of repelling periodic
orbits for rational functions satisfying the summability condition.

1 Introduction

Non-uniform hyperbolicity. Global attractors or repellers of unstable systems often dis-
play a very complicated fractal structure which in turn is crucial in understanding underlying
dynamics. Julia set of rational function with hyperbolic periodic points is a prototype example
of global holomorphic repeller. Even in the simplest quadratic case, Julia sets display a striking
complexity. Omne of the main objectives of the paper is to explore fractal parameters of ra-
tional Julia sets through thermodynamical formalism. In the theory of iterations, equilibrium
measures for conformal potentials can be used to characterize metric properties of invariant
sets. This method has its origins in [2, 9] and led further to a systematic study of the so-
called conformal (Sullivan-Patterson) measures, [10, 3]. Our technical arguments are based on
non-uniformly hyperbolicity of [4].

Suppose that F' is a rational function without parabolic periodic points. Denote by Crit
the set of all critical points {¢ € C: F'(c) = 0} of F. We say that F satisfies the summability
condition with an exponent « if for every critical point ¢ € Crit N J, there exists a positive

integer n(c) such that,
o0

Yo IEY (@I < oo
n=n(c)
and F does not have parabolic cycles.

For simplicity, we assume that there is not any critical point which belongs to another
critical orbit. Otherwise all theorems remain valid with the following amendment: a “block” of
critical points

F: = ... —=c— ... ... =, (1)



of multiplicities w1, o, - .., pg enters the statements as if it is a single critical point of multi-
plicity [] p;.

It is believed that the class of rational functions which satisfy the summability condition with
any exponent o > 0 is generic in the measure theoretical sense in the space of all rational maps of
a given degree, see [8]. Generic systems are usually distinguished by some form of hyperbolicity.
A system can become hyperbolic if one considers only small pieces of the phase space and a high
iterate of the map on each piece. If it is possible to find such pieces almost everywhere, we say
that the system induces hyperbolicity or is non-uniformly hyperbolic with respect to a given
measure. This approach originates from the work of Jakobson on the abundance of absolutely
continuous invariant measures in unimodal maps as well as Benedicks and Carleson’s work
on the Hénon attractor. In holomorphic dynamics a similar strategy was followed in [4] to
study non-uniform hyperbolicity with respect to the so-called conformal measures. Conformal
or Sullivan-Patterson measures are dynamical analogues of Hausdorff measures and capture
important (hyperbolic) features of the underlying dynamics. If is F' a rational map with the
Julia set J then a Borel measure v supported on J is called conformal with an exponent p (or
p-conformal) if for every Borel set A on which F is injective one has

vFB) = [ [FEPF d.

As observed in [10], the set of pairs (p, v) with p-conformal measure v is compact (in the weak-x
topology). Hence, there exists a conformal measure with the minimal exponent

Oconf = inf{p:Ja p-conformal measure on J.}

The minimal exponent dcop ¢ is also called a conformal dimension of J.
In [4] it is proven that if

oo

sup Y n- [(F™(e)'|7* < oo,
ceCritnNd  p—p,,

holds then a strong version of non-uniform hyperbolicity is true, namely, there exists a unique
absolutely continuous invariant measure o with respect to a unique d., f-conformal measure
with dcons = HDim(J). Additionally, o is mixing and has a positive Lyapunov exponent.

Poincaré series. Patterson-Sullivan’s construction of conformal measures is based on Poin-
caré series, [10]. This construction was further studied in [4]. In the current paper we will focus
on the relations between Poincaré series and fractal geometry of Julia sets.
We call a point z admissible if it does not belong to |2, F™(Crit). Take an admissible point
z and assume that F has no elliptic Fatou components and J # C. We define the Poincaré
series by
> -8
D) = Y Y [ )

n=1 ycF-"z



The series converges for every d > dpgin(z) and the minimal such §py;p, (2) is called the Poincaré
exponent (of F' at the point z). By the standard distortion considerations, if F is a component of
the Fatou set, then for all admissible z € F Poincaré exponents coincide, so we set dpoin (F) :=
dpoin(z).- We define the Poincaré exponent by

5Poin(J) = max {51302'”(*7:)}’

Should J = C then by the definition dpein(J) = 2. By Theorem 1 of [4]. if a rational function
F satisfies the summability condition with an exponent a < %ﬁ then
5p0in(z) = 5Poin(c) = 5p0in(J) = inf {5p0in(£L‘) LT e C} . (2)

for every z which is at a positive distance to the critical orbits and every ¢ € Crit N J of
the maximal multiplicity.! Moreover, the Poincaré series with the critical exponent §pg;,(J)
diverges for every point z € C.

In the current paper we will prove a statistical version of Theorem 1 of [4].

Theorem 1 If a rational function F satisfies the summability condition with an exponent

a < #’% then for almost all z € C in the sense of Lebesgue measure,

dpoin(2) = inf{5poin($) S C} .

Let HDim(J) and MDim(J) stand for Hausdorff and Minkowski dimensions of J, respec-
tively, and the hyperbolic dimension of a Julia set J. is defined as

HypDim(J) = sup HDim(K) ,
KcJ

where the supremum is taken over all hyperbolic subsets of J. In [3] it was proven that
dcons = HypDim(J) for every rational map F. If a rational function F' satisfies the summability

condition with an exponent o < _—F—— where p is any (e.g., maximal) of the quantities in the

formula below, then according to [4],
6conf(J) = 6Poin(J) = 6Whit(J) = MDim(J) = HDim(J)' (3)

Let P, be a set of all periodic points of period n in the Julia set J. We define the Poincaré
series on periodic points as
Per — 1 ny/ —0
=3 =3 | )
n
n=1 YyEPn

and the corresponding Poincaré exponent as

Oper = inf{d: LT < oo}.

'The equality §poin(J) = inf{dpoin(z) : = € C} can be regarded as an alternative definition of the Poincaré
exponent when J = C.



Theorem 2 Suppose that F is a rational function which satisfies the summability condition

: JPoin(J)
with an exponent o < prom s Then

celliiny Opon(®) = Oper ()

Pressure function. Let v be an ergodic F-invariant measure. Denote by h,(F) the v-entropy
of F. The standard pressure function P(t) is defined as

P(t) = sup{h (F) =t [ log|F/lav} ,

where the supremum is taken over all F-invariant and ergodic measures v. F. Przytycki proved
in [6] (Theorem A2.9.) that P(t) = inf{P(z,t); z € C}, where

1
P(zt) =limsup—log 3" [(F")(y)|™".
n—00 yeF—n(z)

The function P(z,t) is equal to P(t) for z outside of an exceptional set of Hausdorff dimension
0 and the smallest zero of P(t) is equal to HypDim(J). We recall that P(-) is strictly decreasing
and convex function for every ¢ € [0, HypDim(J)], see [6].

A pressure function H(t) on periodic points is given by

1
H(t) = limsup — log Z I(F™) (2)|7t.
n—oo T 2EPy,

Let L£,(n) be a set of all periodic points z € P, such that a branch F~" which fixes z is well
defined on the ball By(z). The periodic points from L, are ‘visible’ from the scale n > 0 and
the corresponding pressure function Hy(t) is defined by

Hy(t) =lmsup log 3 [(F)(2)].
n—oo T ZEEn(n)

Theorem 3 Suppose that F is a rational function which satisfies the summability condition

with an exponent o < ;%Llin(ﬂ' Then there exists n > 0 so that

for every t € [0, HypDim(J)].

Observe that the smallest zero of P(t) is a number at which the Poincaré series starts to diverge
exponentially and is by definition smaller and equal to dpyin(J). Therefore, the equality of
these two numbers is a reflection of some underlying hyperbolicity of the system. The estimate
P(t) > H(t) for all polynomials was obtained recently in [1]. Further development related to
Thereom 3 can be found in [7].



Conventions. Many properties will take into account piymqe; = maxeccritns p(c) — the maximal
multiplicity of critical points in the Julia set (calculated as in 1, if there are any critical orbit
relations).

If the Julia set is not the whole sphere, we use the usual Euclidean metric on the plane,
changing the coordinates by a Mobius transformation so that oo belongs to a periodic Fatou
component, and doing all the reasoning on a large compact containing the Julia set. Alterna-
tively (and also when J = C) one can use the spherical metric. For simplicity and convenience
of the reader we will write all the distortion estimates for the planar metric, when Kobe dis-
tortion theorem has a more familiar formulation. The estimates remain valid in the case of
spherical metric, with an appropriate version of Kobe distortion theorem (which differs only by
a multiplicative constant, since we work with the scales smaller than some very small R).

Another general convention is following: we call F~"(z), ...,z a sequence of preimages of z
by F if for every 1 < 5 < n,

F(F9)(z) = F7t1(2).
We will write ASB whenever A < C'B with some absolute (but depending on the equation)

constant C. If A < CB and B < CA then we write A < B. We adopt the convention that
Y on(wn) ™% < 0o means that the sequence wy, tends to zero as n — oo.

2 Almost everywhere convergence of the Poincaré series

Shrinking neighborhoods. To control the distortion, we will use the method of shrinking
neighborhoods. Suppose that > 72, d, < 1/2 and &, > 0 for every positive integer n. Set
Ay = [lp<n (1 — d%). Let B, be a ball of radius r around a point z and {F~"z} be a sequence
of preimages of z. We define U,, and U], as the connected components of F~™ B,a, and

F~" Bra, ., respectively, which contain F~"z. Clearly,

FUp1 = U, C U,.

If Uy, for 1 < k < n, do not contain critical points then distortion of F™ : U} — Bra,,, is
bounded (the K&be distortion lemma) by a power of ﬁ, multiplied by an absolute constant.

Since Y, op < %, one also has [], (1 —d,) > %, and hence always B,y C Bra,,-

Specification of orbits. We call F~"(z),...,z a sequence of preimages of z by F if for every
1<j<m, | |
F(F)(z) = F7t1(2).
We will estimate expansion along the backward orbits by decomposing them into blocks of
different types. We will introduce three types of orbits.

Definition 2.1 Let RF < R < 1.

1. A sequence F~"(z),---,F~1(2),z of preimages of z is of the first type with respect to
critical points ¢1 and co if



(i)  Shrinking neighborhoods Uy, for B.(z), 1 < k < n, avoid critical points and r < 2R’.
(ii) The critical point co € AUy,
(iii) The critical point ¢y € F~1Br(Fz).

2. Let dist (z,Jr) < R'/2. A sequence F~"(z),---,F~1(2),z of preimages of z is of the
second type if the ball Br/(z) can be pulled back univalently along it.

3. A sequence F~"(z),---,F~Y(z),z of preimages of z is of the third type with respect to
the critical point co if

(i)  Shrinking neighborhoods Uy, for B,(z), 1 < k < n, avoid critical points and r < 2R’ ,
(ii) The critical point co € AUy, .

We say that a backward orbit y = F~"(z),...,z is decomposed into a sequence of blocks
if there exists an increasing sequence of integers 0 = ng < ... < ng = n so that for every
i =0,...,k— 1 the orbit F~™+1(z),..., F " (z) is of type 1,2, or 3. Given a pair of integers
0 <r <1 < n, we say that a subsequence F~"(y),..., F~™ (y) yields expansion M if

[(F™ =) (y)| > M

Lemma 2.1 Assume that a rational function F satisfies the summability condition with an
exponent o < 1 and set f = pmaz/(1 — ). There exist € > 0, parameters R’ < R < 1, and
a sequence v, S0 7.8 < 1/(16deg F)? , with the following properties: if z belongs to the
e-neighborhood of the Julia set J and a ball BA(z) can be pulled back univalently by a branch
of F~N then there exist positive constants L' > L, K independent of z,A, and € such that
the sequence F~N(2),...,z can be decomposed into blocks of types type 1, 2, and 3, with the
parameters R < R and

e cvery type 2 block, except possibly the leftmost one, has the length contained in [L,L') and
yields expansion 6,

o the leftmost type 2 block has the length contained in [0, L] and yields expansion K > 0,
o all subsequences of the form 1...13, except possibly the rightmost one, yield expansion
Vhj - Vo Vho
k; being the lengths of the corresponding blocks,
e the rightmost sequence of the form 1...13 yields expansion

Vij + + + Ver Vko A=w&)/ tmaz)  if o critical point ¢ € Ba(z) ,
Vij - - - Vier Vho A=Y bmaz) if otherwise |

where pl .. s the largest multiplicity of critical points of F met by shrinking neighborhoods
involved in the decomposition procedure of the sequence F~N(2),...,z into blocks of types
1, 2, and 3, with the parameters R' < R.



Proof: If we replace in the last estimate u),,, by tmqz then Lemma 2.1 is verbatim the Main
Lemma of [4]. On the other hand it is clear that the critical points of F' which are not involved
in the construction of blocks of types 1, 2, and 3 do not contribute to the estimates. Therefore,
after this change in the formulation of the Main Lemma of [4], the estimates of expansion along
the rightmost blocks are sill valid.

|

Conditional estimates. Fix a point z and a positive number A. Let H(z, A) stand for
a set of all preimages of z such that a ball Ba(z) can be pulled back univalently along the
corresponding branch. By Lemma 2.1, every backward orbit of z which terminates at y €
H(z,A) can be decomposed into blocks of type 1, 2, or 3.

In the decomposition of Lemma 2.1, let € #H(z, A) be a point which starts a type 3 block.
Denote by I(z|z) = I*(x|z) a set of all y € H(z,A) which are the endpoints of type 1 blocks
preceded by exactly one type 3 block. For example, preimages of 2 which are endpoints of
blocks 13, 113,... belong to I(z|z). Note that the definition depends on the choice of A.

We will drop z from the notation of I(z|z) whenever no confusion can arise.

Lemma 2.2 Let f = pmaz/(1 — a). If a rational function F satisfies the summability condi-
tion with an exponent a < 1 then there exist € > 0 and a sequence v, summable with the power
—B = pmaz 1oy 80 that for every point z from e-neighborhood of the Julia set J and every set

I(z]2) = 12 (a]2),

>

1 & _B(1—
< g E fyk B Ak(i‘) ﬂ(l l/l“maw)
y€l(z|2)

k=1

(F"(y))l () ‘

where
A 1 if x# 2,
2 =1 dist (z, F¥(Critn ) if z=2.

Proof: Let v, be the sequence from the agsertion of Lemma 2.1.

Observe that any point y € F~*(z) has at most 4 deg F preimages of a given length which
are of the first or the third type. In fact, since pull-backs to the critical values are univalent,
there is only one way to hit a specific critical value after particular number of steps, and thus
only u(c) ways to hit a critical point ¢, but

Z,u(c) = #{c} + Z(,u(c) —1) < 2(degF —1)+2(degF — 1) < 4degF . (4)

Therefore, for every sequence kg, k1, .. ., ky, of positive integers there are at most (2 deg F)™+!
sequences 1...13 with the corresponding lengths of the pieces of type 1 and 3. By Lemma 2.1,

!
‘(Fn(y)) (y)‘ > Ve - - Vor Voo Loko () (1 7H/Hmas)

7



We obtain that

' -8
> |(#) (y>\ <Y (AdegF)™ (i o Tho) " Ay () PO e
y€l(z) m,ko k1, km
o0
< Y |4deg FY 7P| ... [4deg FY P
m=1 km k1
. 4degFZ’yk_oﬂ Ay () P~ 1maz)
ko
< f: (#)m 4deg F 3" 7.7 Agy(z) PO~/ bmea)
— \16deg F ko Ho
m=1 ko
1 _ —B(1—
< 3 Vel Ago(a) PO bmee)
ko

This completes the proof of Lemma 2.2.
|

Let L' > L be the constants supplied by Lemma, 2.1. In the decomposition of Lemma, 2.1,
let z € H(z,A) be a point which starts a type 2 block. Denote by II;(z|z) and II(z|z)
correspondingly the sets of all “long” (of order L' > n(y) > L) and “short” (of order n(y) < L)
type 2 preimages y of x obtained in the decomposition of Lemma 2.1. This definition also
depends on the choice of A, but as Lemma 2.3 shows we will use only estimates independent
of A, so we simplify the notation by omitting A. Lemma 2.3 is Lemma 3.5 of [4].

Lemma 2.3 Assume that the Poincaré series with exponent q is summable for some point
v € C. Then there exists € > 0 so that for every point z from e-neighborhood of the Julia set J
and every set IL)(z|z) and II4(z|z),

(me))’(y)“q <L

(F"(y))' () -

2yl (z)2)

< C(p) foranyp.

2_yelly(z|7)

Conditional Poincaré series. Recall that H(z, A) stands for a set of all preimages of z such
that a ball BA(z) can be pulled back univalently along the corresponding branch.

Proposition 1 Suppose that a rational function F satisfies the summability condition with an
exponent

5Poin(J )
Ymaz + 5Poin(J) )




Then there exists € > 0 so that for every p > dpoin(J) and every point z in the e-neighborhood
of the Julia set, there exists C(e,p) so that
' —-p > (;_1)
S OEY @ " < ¢ Y v A e
yEH(2,A) k=1

Proof: The proof follows closely the proof of the self-improving property of the Poincaré series
from [4]. Let p € (dpoin(J),2] and ¢ be a point of maximal multiplicity. Then, by (2), the
Poincaré series ¥,(c) is summable.

We take v := ¢ in the hypotheses of Lemma, 2.3. By Lemma 2.3, there exists ¢ > 0 so that
for every z from the e-neighborhood of the Julia set of F,

> (o) w| " <
yell;(z)
Also by Lemma 2.3
-p
> |96 < o= oo

y€ell, (CB)

We expand 3y, n) ‘(F")' (y)‘_p by grouping preimages of the same kind into clusters.

We begin with z obtaining preimages of three kinds: I(z) = I*(z), IT;(z) and IL,(z). Points in
II,(z) are terminal while preimages y of the points in I(z) and II;(z) are divided further. We
proceed in this fagshion down the tree of preimages of z. Using Lemmas 2.2 and 2.3, we obtain
that

> e = 2 Y e+ Y ) @)
yEH(2,A) 2 €1l (z) 2 €eLIL;(2)
( Z (Fn(z”))l (zll) P + Z (Fn(z”))l (zll) B
2"ells (2) 2"eLII;(2")
n(z"") N . >
(z”’ EIZIs(z”) (F ) (z ) ¥

1 1 &

C + <§+ 3 Z’YkpAk(z)_p(l_l/”m”)> (
k=1

C

- Oy (1+ > % Ak(z)—f”(l—l/“maw))
k=1

IA

o]
< 3C Y %P Ag(z) PO bmas)
k=1

This proves Proposition 1.



Proof of Theorem 1 Let ¢ be the normalized Lebesgue measure on €. Observe that for
every integer k > 0 and every p < 2,

/ Ap(z) P11 bmes) 4 < 3 /|z — FR(e)| P01 tmes) do < oo .
ceCritNJ
Hence for every p € (0poin(J), 2),
o0
/ Zy,;?’ Ap(2)PU/imes= do < €3 7P < €' < 00

k=1

and consequently, for almost all z in the sense of Lebesgue measure o,
ny/ -p 1
> ey e <o

yeH(2,A)

is bounded independently from A. Passing with A to zero we obtain Theorem 1.

2.1 Proof of Theorem 2.

Construction. Let z € J be a periodic point with period n and a sequence
F7(2),...F(2),2

form a chain of preimages, that is F(F~%(z)) = F~"*1(2) for ¢ = 1,...n. We will decompose
the chain into blocks of preimages of the types 2 and 1...1. Consider shrinking neighborhoods
{Uy} for Bop/(z). If they do not contain the critical points we form one block of type 2 of
the length n. Otherwise, we set » = 0 and increase it continuously until certain shrinking
neighborhood U}, hits a critical point ¢, ¢ € U. It must happen for some 0 < r < 2R'. We set
ny := k and z; := F~"(z). Then 2z is a third type preimage of z and the ball B,(z) can be
pulled back univalently by F™*' along the chain.

Inductive procedure. Suppose we have already constructed z; = F~"(z) which is of
type 1 or 3. We enlarge the ball B,(z;) continuously increasing the radius r from 0 until one
of the following conditions is met:

1) for some k < n — n; the shrinking neighborhood Uy, for B,(2;) hits a critical point
ce CritNJ, c € U,

2)  radius r reaches the value of 2R’

In the case 1) we put n;q1 := n; + k. Clearly, zj41 := F~™+!(2) is a type 1 preimage of z;.
If 2) holds, we set zj41 := F~"(z1) which is a type 2 preimage of z;. This terminates the
construction in this case.

10



Coding. As a result of the inductive procedure, we can decompose the backward orbit of
every point z from a given cycle C into pieces of type 1, 2 and 3. We ascribe to the cycle a code
2 if there is a point z € C so that its backward orbit F~"(z),...,z consists of one block of type
2. Otherwise, for every z € C its backward orbit F~"(z),...,zz must contain a least one block
of type 3 or 1. Consider now all critical points which end or begin the blocks of type 3 and
1. Denote fhmer(C) a maximal multiplicity of these critical points. Let y € C be a point which
begins or ends a type 3 or a type 1 block with the corresponding critical point of multiplicity
tmaz(C). We attach to C a code of the backward orbit F~"(y),...,y.

This gives a coding of cycles by sequences of 1’s, 2’s. By the construction, only the fol-
lowing three types of codings are allowable: 2)1...1,21...1. We recall that according to our
convention, during the inductive procedure we put symbols in the coding from the right to the
left.

We attach to every chain of preimages of z the sequence ki, . . . kg of the lengths of the blocks
of preimages of a given type in its coding. Again our convention requires that kg always stands
for the length of the rightmost block in the code. Clearly, kg +--- + k; = n.

Estimates. We recall that the last estimate of Lemma 2.1 (u!,.. =: tmaz(C)) implies that
every sequence of the form 11...1 with the length of the corresponding pieces &, ... ko yields
expansion

Yy = -+ Yko

Let v be a dopn r-conformal measure and 6 > dconp. Next, observe that for singleton sequences
{2} of the length k£ < n we have the following estimate,

HBr(@) 1
2, TGP © S e S o ®)

yeF—k

which is independent from k.

Let A, be a set of all periodic points of period n in the Julia set with codes of the form
1...1and 21...1. If z starts a block of type 2 in the code of F~"(z),...z then we define n,
by F™(x) = z. Hence,

n 1 1
< S e
yEZ.An nwzzl (11.;13 |(an)l($)|5> (yep—zn+n,c |(Fn)l(y)|5)

KR’ Z (fYkl BERR fYko)_J
11...13

IA

For every sequence ki,...ky of positive integers, there is at most (2deg F)!*! different
branches involved in the construction of the codings 11...1 with the corresponding lengths
of the pieces of type 1 (see the estimate (4)). Every periodic point z defines a unique inverse

11



branch of F~" by the condition that F~"(z) = z. Therefore, we obtain that

Z Z | F" SJ Z Z (4degF)l+1(fYkl Teee” fYko)_é

= yE.A 1 Lk++ko=n

Let B, be a set of all repelling points of period n coded by a sequence 2. By eventually ‘onto’
property, there exists m > 0 so that every disk with center in J and radius R’ contains a
preimage F~%(c), k < m, of a critical point ¢ of the maximal multiplicity pmqee. Since the
derivative of F' is bounded on J (if J = C then we work with the spherical metric), we arrive
at the following estimate,

Z ZIF‘” S X X EmHHEIT
n=1

= yeBn

provided & > 8poin(J) = dcons, see (2) and (3). Since A, U By, is the set of all periodic points
of period n, we obtain that dper(J) < dpoin(J).

The reversed inequality follows from the general theory. Indeed, let X be a Cantor repeller
contained in J,. Denote by dper(X) the Poincaré exponent of the restriction of F to X. For
Cantor repellers we have that

5Per(X) = 6conf(X) = HDim(X) .

Since deonf(J) = SUpx Oeonf(X), for any 6§ < deons there exist a Cantor repeller X C J and a
vicinity W of X so that for any point z € W, the Poincaré series X5 x (2) = 0o. Consequently,
for any non-exceptional z € C there exists y € W so that

Z Z|Fy |5>25X() oo,

= yeCn
which completes the proof of Theorem 2.

2.2 Proof of Theorem 3.

We start with a remark that P(t) < H(t) by Katok’s theory, [5, 6]. Indeed, let X be a Cantor
repeller contained in J.. Denote by Px(t) the pressure of the restriction of F' to X. Then

P(t) = }S(léI}PX(t) = }S(léI}HX(t) < H(t).

12



Different types of periodic orbits. As in the proof of Thereom 3, we divide all periodic
points of F' of period n into two parts, A, and B,. Every cycle in 4,, has a code of the form
21...10r 1...1 with the corresponding lengths of the blocks of 1’s and 2 adding up to n. If
the code of a cycle C of period n contains a terminating block of type 2 starting at y € C then
we will replace it by a block of type 1 preimages starting at y in the decomposition of the chain
F~"(y),...,y. A new code of C is of the form 1...1 with the corresponding lengths of the blocks
of 1’s adding up to a number in [n,2n). As in the proof of Theorem 2, we observe that for every
sequence ki, ..., ko of positive integers there is at most (2 deg F)'*! different branches involved
in the construction of the codes 11...1 with the corresponding lengths of the pieces associated
to a given choice of the critical points. Therefore, denoting Hy(t) = > c 4, |(F™) (y)|7*, we
obtain that

Hn (1)

N

Z (4degF)l+1(fYkl Tee 'fYko)_t
I,n<k;+-+ko<2n

2n
< > (4degFnyk_lt) (4degFZ’Yko)_t)
=1 ki ko
I

2n n
< Z (4degFnyi_t

N——

=1 i=1
2n i
_t (1
< 2(2”)1 s (Z)ﬁ Sn?,
=1

where the estimate in the last line follows from the Holder inequality. By eventually ‘onto’
property, for every non-exceptional w € C, there exists m > 0 so that every disk with center in
J and radius R’ contains a preimage F~*(w), k < m. Since the derivative of F is bounded on
J, say by M, (if J = C then we work with the spherical metric), we have that

DIEY WIS > EEH I

yeBn yEF—"—k(w)

Mmooy [FETY ()T

yeF—n—m(w)

N

For every w € C and 0 < ¢ < 8,op, # the pressure P(t,w) is positive, hence
: 1 2 m n+my/ -] _
H(D) < Jim “log (n eun S| =)
y —n—m(y

and Hp/ (t) = H(t). Consequently, H(t) < infw€C P(t,w) for t € [0, HypDim(J)] which com-
pletes the proof of Theorem 3.
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