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Abstract: In this paper we study the multifractal structure of Schramm’s SLE curves.
We derive the values of the (average) spectrum of harmonic measure and prove
Duplantier’s prediction for the multifractal spectrum of SLE curves. The spectrum can
also be used to derive estimates of the dimension, Hölder exponent and other geometrical
quantities. The SLE curves provide perhaps the only example of sets where the spectrum
is non-trivial yet exactly computable.

1. Introduction

The motivation for this paper is twofold: to study multifractal spectrum of the harmonic
measure and to better describe the geometry of Schramm’s SLE curves (see Sects. 1.1
and 1.2 for brief introductions to the respective subjects). Our main result is the following
theorem in which we rigorously compute the average spectrum of harmonic measure on
domains bounded by SLE curves (see below for precise definitions).

Theorem 1. The average integral means spectrum β̄(t) of SLEκ is equal to
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The average integral means spectrum β̄(t) of the bulk of SLE (see definition below) is
equal to

5 − t +
(4 + κ)(4 + κ − √

(4 + κ)2 − 8tκ )

4κ
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,
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16κ
, t ≥ 3(4 + κ)2

32κ
.

Several results can be easily derived from this theorem: dimension estimates of the
boundary of SLEκ hulls, Hölder continuity of SLEκ Riemann maps, Hölder continuity
of SLEκ trace, and more. We also would like to point out that SLEκ seems to be the only
family of models where the spectrum (even average) of harmonic measure is non-trivial
and known explicitly.

1.1. Integral means spectrum. There are several equivalent definitions of harmonic
measure that are useful in different contexts. For a domain Ω with a regular bound-
ary we define the harmonic measure with a pole at z ∈ Ω as the exit distribution
of the standard Brownian motion started at z. Namely, ωz(A) = P(Bz

τ ∈ A), where
τ = inf{t : Bz

t �∈ Ω} is the first time the standard two-dimensional Brownian motion
started at z leaves Ω .

Alternatively, for a simply connected planar domain the harmonic measure is the
image of the normalized length on the unit circle under the Riemann mapping that sends
the origin to z.

It is easy to see that harmonic measure depends on z in a smooth (actually harmonic)
way, thus the geometric properties do not depend on the choice of the pole. So we fix
the pole to be the origin or infinity and eliminate it from notation.

Over the last twenty years it became clear that many extremal problems in the geo-
metric function theory are related to the geometrical properties of harmonic measure
and the proper language for these problems is the multifractal analysis.

Multifractal analysis operates with different spectra of measures and relations between
them. In this paper we study the harmonic measure on simply connected domains, so
we give the rigorous definition for this case only.

Let Ω = C\K , where K is a connected compact set and let φ be a Riemann map-
ping from D− (i.e. the complement of the unit disc) onto Ω such that φ(∞) = ∞. The
integral means spectrum of φ (or Ω) is defined as

βφ(t) = βΩ(t) = lim sup
r→1+

log
∫ |φ′(reiθ )|t dθ
− log(r − 1)

.

The universal integral means spectrum is defined as

B(t) = supβΩ(t),

where supremum is taken over all simply connected domains with compact boundary.
On the basis of work of Brennan, Carleson, Clunie, Jones, Makarov, Pommerenke

and computer experiments for quadratic Julia sets Kraetzer [17] in 1996 formulated the
following universal conjecture:

B(t) = t2/4, |t | < 2,

B(t) = |t | − 1, |t | ≥ 2.
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It is known that many other conjectures follow from Kraetzer’s conjecture. In
particular, Brennan’s conjecture [5] about integrability of |ψ ′|, where ψ is a conformal
map from a domain to the unit disc is equivalent to B(−2) = 1, while Carleson-Jones
conjecture [6] that if φ(z) = z +

∑
anzn is a bounded univalent function in the unit disc

then |an| � n−3/4 is equivalent to B(1) = 1/4.
There are many partial results in both directions: estimates of B(t) from above and

below (see surveys [3,15]). Upper bounds are more difficult and they are still not that far
from the trivial bounds like B(1) ≤ 1/2. Currently the best upper bound is B(1) ≤ 0.46
[14]. Until recently lower bounds were also quite far from the conjectured value.

The main problem in finding lower bounds is that it is almost impossible to compute
the spectrum explicitly for any non-trivial domain. The origin of difficulties is easy to
see: only fractal domains have interesting spectrum, but for them the boundary behavior
of |φ′(reiθ )|t depends on θ in a very non smooth way, making it hard to find the average
growth rate.

We claim that in order to overcome these problems one should work with regular
random fractals instead of deterministic ones. For random fractals it is natural to study
the average integral means spectrum which is defined as

β̄(t) = lim sup
r→1

log
∫

E
[|φ′(reiθ )|t ] dθ

− log |r − 1| .

The advantage of this approach it that for many random fractals the average boundary
behavior of |φ′| is a very smooth function of θ . Therefore it is sufficient to study average
behavior along any particular radius. Regular (random) fractals are invariant under some
(random) transformation, making E|φ′|t a solution of a specific equation. Solving this
equation one can find the average spectrum.

Note that β̄(t) and β(t) do not necessarily coincide. It can even happen (and in this
paper we consider exactly this case) that β̄(t) is not a spectrum of any particular domain.
But β̄(t) is still bounded by the universal spectrum B(t). If there is a random fractal
with β̄(t) > B(t), then for each scale rn = 1 + 1/2n there is a realization of the random
fractal for which the integral mean on the scale rn is at least c2n(β̄(t)−ε), where c is a
universal constant. Then by Makarov’s fractal approximation [25] we can glue together
all these realizations and find a domain which has a large spectrum on all scales.

Another important notion is the dimension or multifractal spectrum of harmonic
measure which can be non-rigorously defined as

f (α) = dim{z : ω(B(z, r)) ≈ rα}, α ≥ 1/2,

where ω(B(z, r)) is the harmonic measure of the disc of radius r centered at z. The
condition α ≥ 1/2 is equivalent to Beurling’s estimate ω(B(z, r)) ≤ cr1/2.

There are several ways to make this definition rigorous, leading to slightly different
notions of spectrum. But it is known [25] that the universal spectrum F(α) = supΩ f (α)
is the same for all definitions of f (α).

For regular (in some sense) fractals the integral means and dimension spectra are
related by a Legendre type transform (for general domains there is only one-side inequal-
ity). It is also known [25] that the universal spectra are related by a Legendre type
transform:

F(α) = inf
t
(t + α(B(t) + 1 − t)),

B(t) = sup
α>0

F(α)− t

α
+ t − 1.
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1.2. Schramm-Loewner Evolution. It is a common belief (and it was proved in a few
cases) that planar lattice models at criticality have conformally invariant scaling limits as
the mesh of the lattice tends to zero. Schramm [32] introduced a one parametric family
of random curves which are called SL Eκ (SLE stands for Stochastic Loewner Evolution
or Schramm-Loewner Evolution) that are the only possible limits of cluster perimeters
for critical lattice models. It turned out to be also a very useful tool in many related
problems.

In this section we give the definition of SLE and the necessary background. The dis-
cussion of various versions of SLE and relations between them can be found in Lawler’s
book [19].

To define SLE we need a classical tool from complex analysis: the Loewner evolu-
tion. In general this is a method to describe by an ODE the evolution of the Riemann
map from a growing (shrinking) domain to a uniformization domain. In this paper we
use the radial Loewner evolution (where uniformization domain is the complement of
the unit disc) and its modifications.

Definition 1. The radial Loewner evolution in the complement of the unit disc with
driving function ξ(t) : R+ → T is the solution of the following ODE:

∂t gt (z) = gt (z)
ξ(t) + gt (z)

ξ(t)− gt (z)
, g0(z) = z. (1)

It is a classical fact [19] that for any driving function ξ , gt is a conformal map from
Ωt → D−, where D− is the complement of the unit disc and Ωt = D−\Kt is the set of
all points where solution of (1) exists up to the time t .

The Schramm-Loewner Evolution SL Eκ is defined as a Loewner evolution driven by
the Brownian motion with speed

√
κ on the unit circle, namely ξ(t) = ei

√
κBt , where Bt

is the standard Brownian motion and κ is a positive parameter. Since ξ is random, we
obtain a family of random sets. The corresponding family of compacts Kt is also called
SLE (or the hull of SLE).

A number of theorems was already established about SLE curves. Rohde and Sch-
ramm [29] proved that SLE for κ �= 8 is a.s. generated by a curve. Namely, almost surely
there is a random curve γ (called trace) such that Ωt is the unbounded component of
D−\γt , where γt = γ ([0, t]). The trace is almost surely a simple curve when κ ≤ 4. In
this case the hull Kt is the same as the curve γt . For κ ≥ 8 the trace γt is a space-filling
curve. In the same paper they also proved that almost surely the Minkowski (and hence
the Hausdorff) dimension of the SL Eκ trace is no more than 1 + κ/8 for κ ≤ 8. Beffara
[2] proved that the Hausdorff dimension is equal to 1+κ/8 for κ = 6, later expanding the
result to all κ ≤ 8. Recently Lawler presented in [20] a completely different proof of the
Hausdorff dimension of SLE paths. Lind [24] proved that the trace is Hölder continuous.

Another natural object is the boundary of SLE hull, namely the boundary of Kt . For
κ ≤ 4 the boundary of SLE is the same as SLE trace (since the trace is a simple curve).
For κ > 4 the boundary is the subset of the trace. Rohde and Schramm [29] proved that
for κ > 4 the dimension of the boundary is no more than 1 + 2/κ .

In 1998 Lawler [18] proved that the a.s. multifractal spectrum of the Brownian frontier
(which is the same as the boundary of SL E6) can be expressed in terms of intersection
exponents. He also showed that these exponents are non-trivial. They have been com-
puted later by Lawler, Schramm, and Werner in [21–23]. In [9,10], physicist Duplantier
using quantum gravity methods predicted the average multifractal spectrum of SLE.
The same result was later derived using conformal field theory by Bettelheim, Rushkin,
Gruzberg, and Wiegmann [4,30].
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Another important property of SLE curves is the so-called duality property: the
boundary of the SL Eκ hull for κ > 4 is in the same measure class as the trace of
SL E16/κ . This property was first discovered by Duplantier, and much later proved by
Zhan [33] and Dubedat [8].

In this paper we rigorously compute the average integral means spectrum of SLE and
show that it coincides with Duplantier’s prediction. This gives new proofs that dimension
of the boundary is no more than 1+2/κ for κ > 4 and SLE maps are Hölder continuous,
and provides more evidence which supports the duality conjecture.

Since β̄ is defined in terms of a Riemann mapping, it is more convenient to work with
ft = g−1

t . From Eq. (1) one can derive an equation on ft . Unfortunately this equation
involves f ′

t as well as ∂t ft , so we have a PDE instead of ODE.
There is another approach which leads to a nice equation. Changing the direction of

the flow defined by Eq. (1) we get the equation for “inverse” function g−t . For a given
driving function ξ , maps g−1

t and g−t are different, but in the case of Brownian motion
they have the same distribution.The precise meaning is given by the following lemma
(which is an analog of the Lemma 3.1 from [29]):

Lemma 1. Let gt be a radial SLE, then for all t ∈ R the map z 
→ g−t (z) has the same
distribution as the map z 
→ f̂t (z)/ξt , where f̂t (z) = g−1

t (zξt ).

Proof. Fix s ∈ R. Let ξ̂ (t) = ξ(s + t)/ξ(s). Then ξ̂ has the same distribution as ξ . Let

ĝt (z) = gs+t (g
−1
s (zξ(s)))/ξ(s).

It is easy to check that ĝ0(z) = z and

ĝ−s(z) = g0(g
−1
s (zξ(s)))/ξ(s) = f̂s(z)/ξ(s).

Differentiating ĝt (z) with respect to t we obtain

∂t ĝt (z) = ĝt (z)
ξ̂ (t) + ĝt (z)

ξ̂ (t)− ĝt (z)
,

hence ĝt has the same distribution as SLE. ��
This lemma proves that the solution of the equation

∂t ft (z) = ft (z)
ft (z) + ξ(t)

ft (z)− ξ(t)
, f0(z) = z, (2)

where ξ(t) = ei
√
κBt has the same distribution as g−1

t . Abusing notations we call it also
SL Eκ .

One of the most important properties of SLE is Markov property, roughly speaking it
means that the composition of two independent copies of SLE is an SLE. The rigorous
formulation is given by the following lemma.

Lemma 2. Let f (1)τ be an SL Eκ driven by ξ (1)(τ ), 0 < τ < t and f (2)τ be an SL Eκ
driven by ξ (2)(τ ), 0 < τ < s, where ξ (1) and ξ (2) are two independent Brownian motions
on the circle. Then fs+t (z) = f (2)s ( f (1)t (z)/ξ (1)(t))ξ (1)(t) is SL Eκ at time t + s.
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Proof. This composition is the solution of Loewner Evolution driven by ξ(τ ), where

ξ(τ ) =
{
ξ (1)(τ ), 0 < τ ≤ t,
ξ (2)(τ − t)ξ (1)(t), t < τ ≤ t + s.

It is easy to see that ξ(τ ) is also a Brownian motion on the circle with the same speed√
κ , hence ft+s is also SL Eκ . ��
We will need yet another modification of SLE which is in fact a manifestation of

stationarity of radial SLE.

Definition 2. Let ξ(t) = exp(i
√
κBt ) be a two-sided Brownian motion on the unit circle.

The whole plane SL Eκ is the family of conformal maps gt satisfying

∂t gt (z) = gt (z)
ξ(t) + gt (z)

ξ(t)− gt (z)
,

with initial condition

lim
t→−∞ et gt (z) = z, z ∈ C\{0}.

The whole-plane SLE satisfies the same differential equation as the radial SLE, the
difference is in the initial conditions. One can think about the whole-plane SLE as about
the radial SLE started at t = −∞. And this is the way to construct the whole-plane SLE
and prove the existence. Proposition 4.21 in [19] proves that the whole-plane Loewner
Evolution gt with the driving function ξ(t) is the limit as s → −∞ of the follow-
ing maps: g(s)t (z) = e−t z if t ≤ s, g(s)t (z) is the solution to (1) with initial condition
g(s)s (x) = e−s z. The same is also true for inverse maps.

We use this argument to prove that there is a limit of e−t ft as t → ∞.

Lemma 3. Let ft be a radial SL Eκ then there is a limit in law of e−t ft (z) as t → ∞.

Proof. The function e−t ft is exactly the function which is used to define the whole-
plane SLE. Multiplication by the exponent corresponds to the shift in time in the driving
function. The function e−t ft (z) has the same distribution as the inverse of g(−t)

0 (z),
hence it converges to F0, where Fτ = g−1

τ and gτ is a whole-plane SLE. ��

1.3. Results, conjectures, and organization of the paper. It is easy to see that the geom-
etry near “the tip” of SLE (the point of growth) is different from the geometry near
“generic” points. This means that for some problems it is more convenient to work with
the so-called bulk of SLE, i.e. the part of the SLE hull which is away from the tip. We
repeat the statement of the main theorem in which we compute the average spectrum of
SLE hull and SLE bulk.

Theorem 1. The average integral means spectrum β̄(t) of SLE is equal to

−t + κ
4 + κ − √

(4 + κ)2 − 8tκ

4κ
t ≤ −1 − 3κ

8
,

−t +
(4 + κ)(4 + κ − √

(4 + κ)2 − 8tκ )

4κ
− 1 − 3κ

8
≤ t ≤ 3(4 + κ)2

32κ
,

t − (4 + κ)2

16κ
t ≥ 3(4 + κ)2

32κ
.
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The average integral means spectrum β̄(t) of the bulk of SLE is equal to

5 − t +
(4 + κ)(4 + κ − √

(4 + κ)2 − 8tκ )

4κ
t ≤ 3(4 + κ)2

32κ
,

t − (4 + κ)2

16κ
, t ≥ 3(4 + κ)2

32κ
.

Remark 1. The local structure of the SLE bulk is the same for all versions of SLE which
means that they all have the same average spectrum.

Remark 2. To prove this theorem we show that

E| f ′(reiθ )|t 
 (r − 1)β((r − 1)2 + θ2)γ ,

where β and γ are given by (12) and (11). We would like to point out that β and γ are
local exponents so they are the same for different versions of SLE.

There are several corollaries that one can derive from Theorem 1:

Corollary 1. The SLE map f is Hölder continuous with any exponent less than

ακ = 1 − 1

µ
−

√
1

µ2 +
2

µ
,

where µ = (4 + κ)2/4κ .

Corollary 2. The Hausdorff dimension of the boundary of the SLE hull for κ ≥ 4 is at
most 1 + 2/κ .

Corollary 3. The SLE trace with time parametrization of SLE maps is Hölder continu-
ous. The Hölder exponent is

1 − κ

24 − 2κ − 8
√

8 + κ
.

The first two results are conjectured to be sharp. They both have been previously
published in [16 and 29] correspondingly. Both results can be easily derived from the
properties of the spectrum (see [25]) and Theorem 1.

The third corollary first appeared in a paper by Lind [24] where she uses derivatives
estimated by Rohde and Schramm. One can use Theorem 1 to prove this result.

Theorem 1 gives the average spectrum of SLE. The question about spectra of indi-
vidual realizations of SLE remains open. We believe that with probability one they all
have the same spectrum β(t) which we call the a.s. spectrum.

It is immediate that the tangent line at t = 3(4 + κ)2/32κ intersects y-axis at −(4 +
κ)2/16κ < −1. This contradicts Makarov’s characterization of possible spectra [25]
which in particular states that the tangent line to β(t) should intersect y-axis between 0
and −1. Thus β̄ can not be a spectrum of any given domain. In particular β̄ is not the
a.s. spectrum of SLE. On the other hand it suggests that the following conjecture is true.

Conjecture 1. Let tmin and tmax be the two points such that the tangents to β̄(t) at tmin
and tmax intersect the y-axis at −1. The almost sure value of the spectrum is equal to
β̄(t) for tmin ≤ t ≤ tmax and continues as the tangents for t < tmin and t > tmax .
Explicit formulas for tmin , tmax , and tangent lines are given in (4) and (5). See Fig. 1 for
plots of β and β̄.
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tmin tmax tc11 tmin tmax tc11

Fig. 1. Plots of β and β̄ spectra. We also show the graph of β̃ (the analytical part of the spectra) as well as
tangent lines at tmin , tmax , and tc = 3(4 + κ)2/32κ . The almost sure spectrum is equal to β̃ as long as it
does not violate Makarov’s condition that tangent lines should intersect the y-axis above −1. This happens
for tmin < t < tmax . Outside of this interval β continues as tangent lines. The average spectrum is given by
β̃ as long as the derivative is less than 1. At t = tc the derivative is equal to 1 and β̄ continues as a straight
line for t > tc

The rest of the paper is organized in the following way. In the first part of the Sect. 2
we discuss Duplantier’s prediction and Conjecture 1. In second part we compute the
moments of | f ′| and prove Theorem 1. In Sect. 3.1 me make some remarks about pos-
sible generalizations of SLE. In the last Sect. 3.2 we explain a possible approach to
Conjecture 1.

2. Integral Means Spectrum of SLE

2.1. Duplantier’s prediction for the spectrum of the bulk. In 2000, by means of quan-
tum gravity, Duplantier predicted that the Hausdorff dimension spectrum of the bulk of
SLE is

f (α) = α − (25 − c)(α − 1)2

12(2α − 1)
, α ≥ 1/2,

where c is the central charge which is related to κ by

c = (6 − κ)(6 − 16/κ)

4
.

The negative values of f do not have a simple geometric interpretation, they correspond
to negative dimensions (see papers by Mandelbrot [26,27]) which appear only in the
random setting. They correspond to the events that have zero probability in the limit, but
appear on finite scales as exceptional events. There is another interpretation in terms of
beta spectrum which we explain below.

Since negative values of f correspond to zero probability events, it makes sense to
introduce the positive part of the spectrum: f + = max{ f, 0}. We believe that f + is the
almost sure value of the dimension spectrum. This is the dimension spectrum counterpart
of Conjecture 1. The function f + is equal to f for α ∈ [αmin, αmax ], where
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αmin = 16 + 4κ + κ2 − 2
√

2
√

16κ + 10κ2 + κ3

(4 − κ)2
, κ �= 4,

αmax = 16 + 4κ + κ2 + 2
√

2
√

16κ + 10κ2 + κ3

(4 − κ)2
, κ �= 4,

αmin = 2

3
, κ = 4,

αmax = ∞, κ = 4.

It is known (see [25]) that for regular fractals the β(t) spectrum is related to the f (α)
spectrum by the Legendre transform. We believe those relations to hold for SLE as well:

β(t)− t + 1 = sup
α>0

( f (α)− t)/α,

f (α) = inf
t
(t + α(β(t)− t + 1)).

The Legendre transform of f + is supposed to be equal to the almost sure value of
the integral means spectrum β(t), while the Legendre transform of f is believed to be
equal to the average integral means spectrum β̄(t).

The Legendre transform of f + has two phase transitions: one for negative t and one
for positive. The Legendre transform of f + is equal to

β(t) = t

(
1 − 1

αmin

)
− 1, t ≤ tmin,

β(t) = −t +
(4 + κ)

(
4 + κ − √

(4 + κ)2 − 8tκ
)

4κ
, tmin < t < tmax , (3)

β(t) = t

(
1 − 1

αmax

)
− 1, t ≥ tmax ,

where

tmin = − f ′(αmin)αmin, κ > 0,

tmax = − f ′(αmax )αmax , κ �= 4,

tmax = 3/2, κ = 4.

We can also express tmin and tmax in terms of µ = 4/κ + 2 + κ/4 = (4 + κ)2/4κ:

tmin = −1 − 2µ− (1 + µ)
√

1 + 2µ

µ
,

tmax = −1 − 2µ + (1 + µ)
√

1 + 2µ

µ
.

(4)

And the linear functions in (3) can be written as

t

(
1√

1 − 2tmin/µ
− 1

)
− 1,

t

(
1√

1 − 2tmax/µ
− 1

)
− 1.

(5)
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For convenience we introduce

β̃(t) = −t +
(4 + κ)

(
4 + κ − √

(4 + κ)2 − 8tκ
)

4κ
,

which is the analytic part of the spectrum and defined for all t < (4 + κ)2/8κ . This
function is the analytic part of the Legendre transform of f . The critical points tmax and
tmin are the points where the tangent line to the graph of β̄(t) intersects the y-axis at −1.
The Legendre transform of f + is equal to β̃(t) between these two critical points and
then continues as a linear function.

Note that Makarov’s theorem [25] states that all possible integral means spectra sat-
isfy the following conditions: they are non-negative convex functions bounded by the
universal spectrum such that the tangent line at any point intersects the y-axis between 0
and −1. So there is another way to describe the Legendre transform of f +: it coincides
with β̃ as long as this does not contradict Makarov’s criteria and then continues in the
only possible way.

If we do not cut off the negative part of f , then the picture is a bit different. There
is no phase transition for negative t . For positive t , phase transition occurs later, and it
happens because the derivative of f (α) is bounded at infinity. For large α,

f (α) = α

(
1 − (4 + κ)2

16κ

)
+

3(4 + κ)2

32κ
+ O

(
1

α

)
,

hence

β̄(t) = −t +
(4 + κ)

(
4 + κ − √

(4 + κ)2 − 8tκ
)

4κ
, t ≤ 3(4 + κ)2

32κ
,

β̄(t) = 1 − (4 + κ)2

16κ
+ t − 1 = t − (4 + κ)2

16κ
, t >

3(4 + κ)2

32κ
.

The explanation of this phase transition is rather simple. It is obvious that β̄(t) is a
convex function, and it follows from Makarov’s fractal approximation that the average
spectrum is bounded by the universal spectrum. It is known that for the large values of
|t | the universal spectrum is equal to |t | − 1. Altogether it implies that |β̄ ′(t)| ≤ 1 and if
it is equal to 1 at some point then β̄ should be linear after this point. And β̄ ′ = 1 exactly
at t = 3(4 + κ)2/32κ .

2.2. Rigorous computation of the spectrum. In this section we compute the average inte-
gral means spectrum of SLE (and its bulk) and show that it coincides with the Legendre
transform of the dimension spectrum predicted by Duplantier.

The average integral means spectrum is the growth rate of F̃(z, τ ) = E
[| f ′

τ (z)|t
]
,

where fτ is a radial SL Eκ . Actually, this function depends also on t and κ , but they
are fixed throughout the proof and we will not mention this dependence to simplify the
notation.

Lemma 4. The function F̃(z, τ ) is a solution of

t
r4 + 4r2(1 − r cos θ)− 1

(r2 − 2r cos θ + 1)2
F̃ +

r(r2 − 1)

r2 − 2r cos θ + 1
F̃r

− 2r sin θ

r2 − 2r cos θ + 1
F̃θ +

κ

2
F̃θ,θ − F̃τ = 0, (6)

where z = reiθ .
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Proof. The idea of the proof is to construct a martingale Ms (w.r.t filtration defining
SLE) which involves F̃ . The ds term in its Itô derivative should vanish. This will give
us a partial differential equation on F̃ . We set

Ms = E
[| f ′

τ (z)|t | Fs
]
.

By Lemma 2,

E
[| f ′

τ (z)|t | Fs
] = E

[| f ′
s (z)|t | f ′

τ−s( fs(z)/ξs)|t | Fs
]

= | f ′
s (z)|t F̃(zs, τ − s),

where zs = fs(z)/ξs .
We will need derivatives of zs and | f ′

s |t ,

∂s log | f ′
s (z)| = Re

∂z fs
fs +ξs
fs−ξs

f ′
s

= Re

[
fs + ξs

fs − ξs
− 2ξs fs

( fs − ξs)2

]

= Re
z2

s − 1 − 2zs

(zs − 1)2
= r4 + 4r2(1 − r cos θ)− 1

(r2 − 2r cos θ + 1)2
,

where zs = r exp(iθ). Next we have to find the derivative of zs ,

d log zs = d log r + idθ = d log fs − i
√
κd Bs,

where

d log fs = d fs

fs
= zs + 1

zs − 1
ds.

Writing everything in terms of r and θ we get

d log r + idθ = zs + 1

zs − 1
ds − i

√
κd Bs

= r2 − 1

r2 − 2r cos θ + 1
ds + i

(
− 2r sin θ

r2 − 2r cos θ + 1
ds − √

κd Bs

)
.

Summing it all up we obtain

∂s log | f ′
s (z)| = r4 + 4r2(1 − r cos θ)− 1

(r2 − 2r cos θ + 1)2
, (7)

dθ = − 2r sin θ

r2 − 2r cos θ + 1
ds − √

κd Bs, (8)

dr = rd log r = r(r2 − 1)

r2 − 2r cos θ + 1
ds. (9)

Let us write F(z, τ ) as F(r, θ, τ ). The ds term in the Itô derivative of M is equal to

| f ′
s (z)|t

(
t
r4 + 4r2(1 − r cos θ)− 1

(r2 − 2r cos θ + 1)2
F̃ +

r(r2 − 1)

r2 − 2r cos θ + 1
F̃r

− 2r sin θ

r2 − 2r cos θ + 1
F̃θ +

κ

2
F̃θ,θ − F̃τ

)
.

This derivative should be 0 and, since fs is a univalent function and its derivative never
vanishes, F̃ is a solution of (6). ��
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By Lemma 3 there is a limit of e−τ fτ as τ → ∞. Hence we can introduce

F(z) = E[|F ′
0(z)|t ] = lim

τ→∞ e−τ t F̃(z, τ ),

where F0 is a whole-plane SLE map at time zero. Passing to the limit in (6) we can see
that F(z) is a solution of

t

(
r4 + 4r2(1 − r cos θ)− 1

(r2 − 2r cos θ + 1)2
− 1

)
F +

r(r2 − 1)

r2 − 2r cos θ + 1
Fr

− 2r sin θ

r2 − 2r cos θ + 1
Fθ +

κ

2
Fθ,θ = 0. (10)

Notation 1. We define two constants β and γ :

γ = γ (t, κ) = 4 + κ − √
(4 + κ)2 − 8tκ

2κ
, (11)

β = β(t, κ) = t − (4 + κ)γ

2
. (12)

It is easy to see that the second constant β is equal to −β̃.

Let us explain where these constants come from. Roughly speaking spectrum β(t)
is the growth rate of F as r → 1. F is a solution of Eq. (10) which is parabolic as
r → 1. It has a singularity when |z| = 1 which corresponds to the large time singularity
in the usual parabolic equation. Coefficients of (10) have singularities at z = 1 which
means that solutions could have an additional singularity at z = 1. Let us assume that F
has a power series expansion near 1. Then we can write the power series expansion of
coefficients of (10) and assuming that the leading term is (r − 1)β((r − 1)2 + θ2)γ we
get an equation on β and γ . Constants γ and β are solutions of these equations. Now
let us explain why it makes sense to consider this expansion.

There is another (and more popular) version of SLE: the chordal SLE in the upper
half-plane, which is defined as the solution of

∂τ fτ (z) = − 2

fτ (z)− √
κBτ

.

If we define F(x, y, τ ) = E| f ′
τ (x + iy)|t , then the argument similar to the one presented

above proves that F satisfies a certain PDE. If we remove the Fτ term (which should be
irrelevant for large τ ) then the equation will be

2t
x2 − y2

(x2 + y2)2
F − 2x

x2 + y2 Fx +
2y

x2 + y2 Fy +
κ

2
Fxx = 0. (13)

This equation is “tangent” to (10) at r = 1 and θ = 0.
This equation has a solution of the form yβ(x2 + y2)γ , where β and γ as above.

Actually, this is the way we found these exponents. This approach seems to be easier,
but there are two major problems. First it is not easy to argue that we can neglect the
derivative with respect to τ . Another problem is that yβ(x2 + y2)γ can not be equal to F
since it blows up at infinity and we have to show that the local behavior does not depend
on the boundary conditions at infinity.

When this work was finished we learned from Gruzberg that several years ago Has-
tings in [13] derived Eq. (13) by completely different methods (and for completely
different purposes).
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Theorem 2. Let

t ≤ 3(4 + κ)2

32κ
.

Then we have

E

[∫

|z|=r
|F ′

0(reiθ )|t dθ
]



(

1

r − 1

)β̄(t)
,

where the expectation is taken for a whole-plane SLE map F0 = lim e−τ fτ and β̄(t) is
equal to

−β(t, κ), t > −1 − 3κ

8
,

(14)
−β(t, κ)− 2γ (t, κ)− 1, t ≤ −1 − 3κ

8
.

Proof. Let Λ be the differential operator which corresponds to Eq. (10). This is a para-
bolic operator where θ corresponds to the spatial variable and r → 1 corresponds to the
time variable. It is clear that F(z) is bounded on any circle of radius r0 > 1.

Suppose that we can find positive functions φ+ and φ− which are bounded on the
circle of radius r0 and such that Λφ− < 0 and Λφ+ > 0. Then there are positive con-
stants c+ and c− such that F is between c+φ+ and c−φ− on the circle of radius r0. By
the maximum principle it will be between c+φ+ and c−φ− for all 1 < r < r0.

In Lemma 6 we will construct such functions φ− and φ+. They are of the form

φ± = (r − 1)β(r2 − 2r cos θ + 1)γ (− log(r − 1))∓1g(r2 − 2r cos θ + 1),

where g > 0 for r = 1. Both functions have the same polynomial growth rate as r → 1,
thus F has also the same growth rate. By the Tonelli theorem

E

[∫
|F ′

0|t
]

=
∫

E
[|F ′

0(r, θ)|t
]

dθ ≈
∫
(r − 1)β(r2 − 2r cos θ + 1)γ dθ,

where ≈ means that functions have the same polynomial growth rate. For γ > −1/2
the weight (r2 − 2r cos θ + 1)γ is integrable up to the boundary and we immediately get

E

[∫

|z|=r
|F ′

0|t
]

≈
(

1

r − 1

)−β
.

For γ ≤ −1/2 the situation is a bit different. In this case the integral of the weight blows
up as (r − 1)2γ+1, which gives us E

[∫ |F ′
0|t dθ

] ≈ (r − 1)β+2γ+1. It is easy to check
that γ ≤ −1/2 if and only if t ≤ −1 − 3κ/8. ��
Remark 3. The growth rate of E

[∫ |F ′
0|t

]
is similar to β̄(t) predicted by Duplantier. The

phase transition at t = −1 − 3κ/8 is due to the exceptional behavior of SLE at the tip.
If we integrate over values of θ bounded away from 0 then the weight |z − 1|2γ does not
blow up and we have no phase transition at t = −1 − 3κ/8 any more. This gives us the
spectrum of the bulk of SLE.

Now we can prove Theorem 1 which is actually Theorem 2 stated in terms of integral
means spectrum. This theorem proves that Duplantier’s prediction for β̄(t) is correct.
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Proof (Theorem 1). Theorem 2 gives us the value of β̄(t) for t ≤ 3(4 + κ)2/32κ . Direct
computations show that the derivative of −β(t, κ) at t = 3(4 + κ)2/32κ is equal to one.
As we mentioned before, the β̄ spectrum is a convex function bounded by the universal
spectrum, and the universal spectrum is equal to |t | − 1 for the large values of |t | (see
[7]). This means that if β̄ ′ = 1 at some point then it should continue as a linear function
with slope one. Hence β̄ should continue as t − (4 + κ)2/16κ for t > 3(4 + κ)2/32κ .
Plugging in the values of β and γ we finish the proof of the theorem.

To complete the proof of Theorem 2 we have to construct functions φ− and φ+. We
do it in three steps, first we write the restriction of Eq. (10) to the unit circle, then we
find a positive solution g of the resulting equation. Finally we construct φ− and φ+ out
of g.

We look for a solution in the following form:

f (r, θ) = (r − 1)β(r2 − 2r cos θ + 1)γ g(r2 − 2r cos θ + 1).

Plugging f into (10), factoring (r − 1)β(r2 − 2r cos θ + 1)γ−2 out, and taking r = 1,
we obtain a differential equation on g(2 − 2 cos θ). Using relations between β, γ , t , and
κ we can simplify coefficients and write the equation in the following form:

−2(2 + κ)γ (1 − cos θ)2g(2 − 2 cos θ)

+ (2 − 2 cos θ)
[−2 − κ + 2γ κ + 2κ cos θ − (κ − 2 + 2γ κ) cos(2θ)

]
g′(2 − 2 cos θ)

+ 2κ(2 − 2 cos θ)2 sin θ2g′′(2 − 2 cos θ) = 0. (15)

Lemma 5. Equation (15) has a smooth (with possible exception at θ = 0) positive
bounded solution on the circle if and only if

t ≤ 3(4 + κ)2

32κ
. (16)

Proof. Changing the variable to x = 2 − 2 cos θ we rewrite (15) as a hypergeometric
equation

γ (2 + κ)g(x) + (8 − 2x + κ(x − 2) + 2γ κ(x − 4))g′(x) + κ(x − 4)xg′′(x) = 0,

(17)

which has two independent solutions

g1(x) = 2 F1(a, b,
1

2
+ a + b,

x

4
)

and

g2(x) = x1/2−a−b
2 F1

(
1

2
− a,

1

2
− b,

3

2
− a − b,

x

4

)
,

where

a = γ − 1

κ
−

√
1 − 2tκ

κ
,

b = γ − 1

κ
+

√
1 − 2tκ

κ
.
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Function g(2 − 2 cos θ) is a non-singular part of F and should have a second derivative
everywhere on the unit circle except at the point θ = 0 (the equation on F has a singu-
larity at this point). Note that 2 − 2 cos θ = 4 corresponds to the point −1 on the unit
circle: this is not a singular point, hence g(x) should have expansion c + O(4 − x) at the
endpoint 4.

Any solution of (15) is a linear combination of g1 and g2: g = c1g1 + c2g2. We want
to find coefficients c1 and c2 such that this sum is bounded and has a correct expansion
at x = 4.

Expansions of g1 and g2 at 4 are

g1(x) =
√
πΓ (1/2 + a + b)

Γ (1/2 + a)Γ (1/2 + b)
−

√
πΓ (1/2 + a + b)

Γ (a)Γ (b)

√
4 − x + O(4 − x),

and

g2(x) = 21−2a−2b√πΓ (3/2 − a − b)

Γ (1 − a)Γ (1 − b)

−21−2a−2b√πΓ (3/2 − a − b)

Γ (1/2 − a)Γ (1/2 − b)

√
4 − x + O(4 − x).

If c2 �= 0 then 1/2 − a − b should be nonnegative, otherwise g is not bounded at 0.
Note that

1

2
− a − b = 4 + κ − 4γ κ

2κ

which is nonnegative if and only if

t ≤ 3(4 + κ)2

32κ

which is exactly the restriction from the statement of the lemma. If t > 3(4 + κ)2/32κ ,
then c2 = 0. In this case g has a correct expansion at 4 if and only if Γ (a) = 0 or
Γ (b) = 0, but 1 − 2tκ < 0, so both a and b are not a real number and the gamma
function has only real roots.

We can introduce

C = Γ (1/2 + a + b)Γ (1/2 − a)Γ (1/2 − b)

21−2a−2bΓ (a)Γ (b)Γ (3/2 − a − b)
,

and

g3(x) = g1(x)− Cg2(x).

By construction g3(x) = const + O(4 − x) near 4. Finally we have to prove that g3
is a positive function. Note that in (17) g and g′′ have coefficients of different signs.
Obviously, g3(0) = 1. Suppose that g3 has a local minimum inside the interval (0, 4),
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then g′
3 = 0 and g′′

3 ≥ 0 at this point, hence g3 is also positive. Thus it is sufficient to
check that g3(4) > 0. The value of g3(4) is easy to evaluate:

g3(4) = √
πΓ (1/2 + a + b)

×
(

1

Γ (1/2 + a)Γ (1/2 + b)
− Γ (1/2 − a)Γ (1/2 − b)

Γ (a)Γ (b)Γ (1 − a)Γ (1 − b)

)

=
√
πΓ (1/2 + a + b) cos(π(a + b))

Γ (1/2 + a)Γ (1/2 + b) cos(πa) cos(πb)

= π−3/2Γ (1/2 + a + b) cos(π(a + b))Γ (1/2 − a)Γ (1/2 − b).

By (16), a + b < 1/2, hence Γ (1/2 + a + b) cos(π(a + b)) > 0. Finally we have to show
that Γ (1/2 − a)Γ (1/2 − b) > 0. We consider two different cases: when t ≤ 1/2κ and
t > 1/2κ . In the second case a and b are conjugated and Γ (1/2 − a)Γ (1/2 − b) =
|Γ (1/2 − a)|2 > 0. In the first case, we will prove that 1/2 − a > 0 and 1/2 − b > 0.
It is easy to see that 1/2 − b < 1/2 − a, hence it is sufficient to prove that 1/2 − b > 0.
Recall that

1

2
− b = 1

2
− γ +

1

κ
−

√
1 − 2tκ

κ
,

hence

∂t (1/2 − b) = 1√
1 − 2κt

− 2
√
(4 + κ)2 − 8tκ

> 0.

This means that 1/2 − b has a minimum when t = 0, this minimum is

1

2
− b(0) = 1

2
− γ (0) = 1

2
> 0.

This proves that g3(x) > 0 on [0, 4]. ��
Lemma 6. Let g be a positive bounded solution of (15) and

F = f (r, θ)(− log(r − 1))δ

=(r − 1)β(r2 − 2r cos θ + 1)γ g(r2 − 2r cos θ + 1)(− log(r − 1))δ.

Then

ΛF > 0, δ < 0,

ΛF < 0, δ > 0,

for r sufficiently close to 1.

Proof. Applying Λ we find

ΛF = (− log(r − 1))δ
(
Λ f − f

r(r + 1)δ

(r2 − 2r cos θ + 1)(− log(r − 1))

)
.

By Lemma 5 Λ f = (r − 1)β(r2 − 2r cos θ + 1)γ O(r − 1), hence

ΛF =(− log(r − 1))δ(r − 1)β(r2 − 2r cos θ + 1)γ

×
(

O(r − 1)− r(r + 1)δ(g(2 − 2 cos θ) + O(r − 1))

w(− log(r − 1))

)
.

The sign of the main term is opposite to the sign of δ. This proves the claim. ��
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Remark 4. Note that we proved a stronger result than announced in Theorem 2: E
∫ |F ′|t

has growth rate (r − 1)β up to a factor logδ(r − 1) for arbitrary small |δ|.

3. Concluding Remarks

3.1. Loewner Evolution driven by other processes. It is known that Loewner Evolution
can be defined for a very large class of driving functions. In particular, they do not have
to be continuous. In [3], we proposed to study Lévy-Loewner Evolution (L L E), which
is the Loewner Evolution driven by a Lévy process (i.e. process with independent sta-
tionary increments). This defines a very rich class of random fractals. It seems that it is
still possible to find the spectrum of harmonic measure for this class explicitly.

In the fundamental Lemma 4 we only use the fact that the Brownian motion is a
Lévy process. So the same argument can be applied for L L E . As a result we get that
F = E

[|e−τ f ′
τ (z)|t

]
is the solution of

t

(
r4 + 4r2(1 − r cos θ)− 1

(r2 − 2r cos θ + 1)2
− 1

)
F +

r(r2 − 1)

r2 − 2r cos θ + 1
Fr

− 2r sin θ

r2 − 2r cos θ + 1
Fθ +ΛF = 0,

where Λ is the generator of the driving Lévy process. Thus again finding the spectrum
boils down to the analysis of a parabolic type integro-differential equation. We have
freedom to choose the driving process (and the generatorΛ), so it seems possible to find
a driving process such that this equation could be solved and gives large spectrum.

Unpublished computer experiments by Meyer [28] suggested that the spectrum for
1-stable process could be large (and possibly equal to the conjectured universal spec-
trum). Unfortunately later work by Gruzberg, Guan, Kadanoff, Oikonomou, Rohde,
Rushkin, Winkel, and others [11,12,31] showed that this is wrong. But there is still a
possibility that computer experiments exposed an existing phenomenon. It could be that
the integral means grow fast for a few (relatively) large scales and when we approach
the boundary their growth slows down. If this is true, one can use L L E as a building
block in a snowflake (or any other construction which allows to replicate scales). In this
way one can hope to construct a domain with large integral means on all scales.

3.2. Almost sure value of the spectrum. In this section, we speculate about what should
be done to prove that the almost sure value of the spectrum is given by (3).

Let us introduce random variables Xk(n) = | f ′((1 + 2−n)e2π ik/2n
)|t . The spectrum

is the growth rate of 2−n ∑
k Xk . We know that

2−n
2n
∑

k=1

EXk 
 2nβ̄(t).

We want to show that the probability

P

{
2−n|

∑
Xk − EXk | > 2n(β̄(t)−δ)} (18)

is summable for some positive δ. This will clearly imply that the spectrum of SLE is
equal to β(t) with probability one.
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Conformal field theory considerations suggest that Xk and Xl are essentially inde-
pendent if |k −l| � 1 (in other words the distance between points should be much larger
than their distance to the boundary). In fact it is believed that derivatives are essentially
independent if the distance between points is greater than any power (less than one) of
the distance to the boundary. Let us exaggerate it a little bit more and assume that Xk
and Xl are independent for any k �= l.

Let us denote Xk − EXk by Yk . By the Chebyshev inequality the probability (18) is
less than

E| ∑ Yk |1+ε

2n(1+ε)(β̄(t)+1−δ) .

It is known (see [1]) that for independent random variables with zero mean
E| ∑ Yk |1+ε ≤ c

∑
E|Yk |1+ε , where c is an absolute constant which does not depend on

the number of terms. Using this we can estimate the fraction above by

∑
E|Yk |1+ε

2n(1+ε)(β̄(t)+1−δ) ≤ c
2n2nβ̄(t+tε)

2n(1+ε)(β̄(t)+1−δ) = c2n(1+β̄(t+tε)−β̄(t)−1+δ−εβ̄(t)−ε+εδ). (19)

For small ε < ε0(t) the exponent in the last formula is bounded by

n(β̄ ′(t)tε + ε3/2 + δ − εβ̄(t)− ε + εδ) = n(ε(β̄ ′(t)t − β̄(t)− 1) + ε3/2 + δ + εδ).

If β̄ ′(t)t−β̄(t)−1 = c(t) < 0, then we can find a small εt (depending on t only) such that
εt (β̄

′(t)t − β̄(t)− 1)+ ε3/2
t < c(t)εt/2. Fix δ = −εt c(t)/4, then the exponent in (19) is

negative. This implies that the probability in (18) is summable if −1 < β̄(t)−t β̄ ′(t). The
last inequality means that the tangent line to β at point t intersects the y axis above −1.
This is exactly the condition which appeared in (3).

Thus, assuming the independence of derivatives, we can prove that the almost sure
value of the spectrum is equal to β̄(t) for tmin < t < tmax . For other values of t Maka-
rov’s theorem implies that the spectrum should continue as a straight line tangent to β̄(t)
at tmin and tmax correspondingly.
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