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1. Introduction

The goal of this note is to discuss some of the applications of discrete com-

plex analysis to problems in probability and statistical physics. It is not an

exhaustive survey, and it lacks many references. Forgoing completeness, we try

to give a taste of the subject through examples, concentrating on a few of our

recent papers with Dmitry Chelkak, Hugo Duminil-Copin and Clément Hon-

gler [CS08, CS09, CS10, DCS10, HS10]. There are certainly other interesting

developments in discrete complex analysis, and it would be a worthy goal to

write an extensive exposition with an all-encompassing bibliography, which we

do not attempt here for lack of space.

Complex analysis (we restrict ourselves to the case of one complex or equiv-

alently two real dimensions) studies analytic functions on (subdomains of) the

complex plane, or more generally analytic structures on two dimensional man-

ifolds. Several things are special about the (real) dimension two, and we won’t
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discuss an interesting and often debated question, why exactly complex analysis

is so nice and elegant. In particular, several definitions lead to identical class of

analytic functions, and historically different adjectives (regular, analytic, holo-

morphic, monogenic) were used, depending on the context. For example, an

analytic function has a local power series expansion around every point, while

a holomorphic function has a complex derivative at every point. Equivalence of

these definitions is a major theorem in complex analysis, and there are many

other equivalent definitions in terms of Cauchy-Riemann equations, contour

integrals, primitive functions, hydrodynamic interpretation, etc. Holomorphic

functions have many nice properties, and hundreds of books were devoted to

their study.

Consider now a discretized version of the complex plane: some graph em-

bedded into it, say a square or triangular lattice (more generally one can speak

of discretizations of Riemann surfaces). Can one define analytic functions on

such a graph? Some of the definitions do not admit a straightforward discretiza-

tion: e.g. local power series expansions do not make sense on a lattice, so we

cannot really speak of discrete analyticity. On the other hand, as soon as we

define discrete derivatives, we can ask for the holomorphicity condition. Thus

it is philosophically more correct to speak of discrete holomorphic, rather than

discrete analytic functions. We will use the term preholomorphic introduced by

Ferrand [Fer44], as we prefer it to the term monodiffric used by Isaacs in the

original papers [Isa41, Isa52] (a play on the term monogenic used by Cauchy

for continuous analytic functions).

Though the preholomorphic functions are easy to define, there is a lack

of expository literature about them. We see two main reasons: firstly, there

is no canonical preholomorphicity definition, and one can argue which of the

competing approaches is better (the answer probably depends on potential

applications). Secondly, it is straightforward to transfer to the discrete case

beginnings of the usual complex analysis (a nice topic for an undergraduate

research project), but the easy life ends when it becomes necessary to multiply

preholomorphic functions. There is no easy and natural way to proceed and the

difficulty is addressed depending on the problem at hand.

As there seems to be no canonical discretization of the complex analysis, we

would rather adopt a utilitarian approach, working with definitions correspond-

ing to interesting objects of probabilistic origin, and allowing for a passage to

the scaling limit. We want to emphasize, that we are concerned with the fol-

lowing triplets:

1. A planar graph,

2. Its embedding into the complex plane,

3. Discrete Cauchy-Riemann equations.

We are interested in triplets such that the discrete complex analysis approxi-

mates the continuous one. Note that one can start with only a few elements of
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the triplet, which gives some freedom. For example, given an embedded graph,

one can ask which discrete difference equations have solutions close to holomor-

phic functions. Or, given a planar graph and a notion of preholomorphicity, one

can look for an appropriate embedding.

The ultimate goal is to find lattice models of statistical physics with preholo-

morphic observables. Since those observables would approximate holomorphic

functions, some information about the original model could be subsequently

deduced.

Below we start with several possible definitions of the preholomorphic func-

tions along with historical remarks. Then we discuss some of their recent ap-

plications in probability and statistical physics.

2. Discrete Holomorphic Functions

For a given planar graph, there are several ways to define preholomorphic func-

tions, and it is not always clear which way is preferable. A much better known

class is that of discrete harmonic (or preharmonic) functions, which can be

defined on any graph (not necessarily planar), and also in more than one way.

However, one definition stands out as the simplest: a function on the vertices of

graph is said to be preharmonic at a vertex v, if its discrete Laplacian vanishes:

0 = ∆H(u) :=

∑

v: neighbor of u

(H(v)−H(u)) . (1)

More generally, one can put weights on the edges, which would amount to taking

different resistances in the electric interpretation below. Preharmonic functions

on planar graphs are closely related to discrete holomorphicity: for example,

their gradients defined on the oriented edges by

F ( ~uv) := H(v)−H(u) , (2)

are preholomorphic. Note that the edge function above is antisymmetric, i.e.

F ( ~uv) = −F ( ~vu).

Both classes with the definitions as above are implicit already in the 1847

work of Kirchhoff [Kir47], who interpreted a function defined on oriented edges

as an electric current flowing through the graph. If we assume that all edges

have unit resistance, than the sum of currents flowing from a vertex is zero by

the first Kirchhoff law:
∑

u: neighbor of v

F ( ~uv) = 0 , (3)

and the sum of the currents around any oriented closed contour γ (for the

planar graphs it is sufficient to consider contours around faces) face is zero by

the second Kirchhoff law:
∑

~uv∈γ

F ( ~uv) = 0 . (4)
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The two laws are equivalent to saying that F is given by the gradient of a

potential function H as in (2), and the latter function is preharmonic (1). One

can equivalently think of a hydrodynamic interpretation, with F representing

the flow of liquid. Then conditions (3) and (4) mean that the flow is divergence-

and curl-free correspondingly. Note that in the continuous setting similarly de-

fined gradients of harmonic functions on planar domains coincide up to complex

conjugation with holomorphic functions. And in higher dimensions harmonic

gradients were proposed as one of their possible generalizations.

There are many other ways to introduce discrete structures on graphs, which

can be developed in parallel to the usual complex analysis. We have in mind

mostly such discretizations that restrictions of holomorphic (or harmonic) func-

tions become approximately preholomorphic (or preharmonic). Thus we speak

about graphs embedded into the complex plane or a Riemann surface, and the

choice of embedding plays an important role. Moreover, the applications we

are after require passages to the scaling limit (as mesh of the lattice tends to

zero), so we want to deal with discrete structures which converge to the usual

complex analysis as we take finer and finer graphs.

Preharmonic functions satisfying (1) on the square lattices with decreasing

mesh fit well into this philosophy, and were studied in a number of papers in

early twentieth century (see e.g. [PW23, Bou26, Lus26]), culminating in the

seminal work of Courant, Friedrichs and Lewy. It was shown in [CFL28] that

solution to the Dirichlet problem for a discretization of an elliptic operator

converges to the solution of the analogous continuous problem as the mesh

of the lattice tends to zero. In particular, a preharmonic function with given

boundary values converges in the scaling limit to a harmonic function with the

same boundary values in a rather strong sense, including convergence of all

partial derivatives.

Preholomorphic functions distinctively appeared for the first time in the pa-

pers [Isa41, Isa52] of Isaacs, where he proposed two definitions (and called such

functions “monodiffric”). A few papers of his and others followed, studying the

first definition (5), which is asymmetric on the square lattice. More recently the

first definition was studied by Dynnikov and Novikov [DN03] in the triangular

lattice context, where it becomes symmetric (the triangular lattice is obtained

from the square lattice by adding all the diagonals in one direction).

The second, symmetric, definition was reintroduced by Ferrand, who also

discussed the passage to the scaling limit [Fer44, LF55]. This was followed by

extensive studies of Duffin and others, starting with [Duf56].

Both definitions ask for a discrete version of the Cauchy-Riemann equations

∂iαF = i∂αF or equivalently that z-derivative is independent of direction.

Consider a subregion Ωε of the mesh ε square lattice εZ2
⊂ C and define a

function on its vertices. Isaacs proposed the following two definitions, replacing

the derivatives by discrete differences. His “monodiffric functions of the first

kind” are required to satisfy inside Ωε the following identity:

F (z + iε)− F (z) = i (F (z + ε)− F (z)) , (5)



Discrete Complex Analysis and Probability 599

�
�
�

�
�
�
�
��

@
@

@
@

@
@

@
@I

f

v

v

f

αiα

u v

wz

α

iα

-

6

f

v

v

f

u v

wz

Figure 1. The first and the second Isaacs’ definitions of discrete holomorphic functions:

multiplied by i difference along the vector α is equal to the difference along the rotated

vector iα. Note that the second definition (on the right) is symmetric with respect to

lattice rotations, while the first one is not.

which can be rewritten as

F (z + iε)− F (z)

(z + iε)− z
=

F (z + ε)− F (z)

(z + ε)− z
.

We will be working with his second definition, which is more symmetric and also

appears naturally in probabilistic context (but otherwise the theories based on

two definitions are almost the same). We say that a function is preholomorphic,

if inside Ωε it satisfies the following identity, illustrated in Figure 1:

F (z + iε)− F (z + ε) = i (F (z + ε(1 + i))− F (z)) , (6)

which can also be rewritten as

F (z + iε)− F (z + ε)

(z + iε)− (z + ε)
=

F (z + ε(1 + i))− F (z)

(z + ε(1 + i))− z
.

It is easy to see that restrictions of continuous holomorphic functions to the

mesh ε square lattice satisfy this identity up to O(ε3). Note also that if we color

the lattice in the chess-board fashion, the complex identity (6) can be written

as two real identities (its real and imaginary parts), one involving the real part

of F at black vertices and the imaginary part of F at white vertices, the other

one – vice versa. So unless we have special boundary conditions, F splits into

two “demi-functions” (real at white and imaginary at black vs. imaginary at

black and real at white vertices), and some prefer to consider just one of those,

i.e. ask F to be purely real at black vertices and purely imaginary at white ones.

The theory of so defined preholomorphic functions starts much like the

usual complex analysis. It is easy to check, that for preholomorphic functions

sums are also preholomorphic, discrete contour integrals vanish, primitive (in
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a simply-connected domain) and derivative are well-defined and are preholo-

morphic functions on the dual square lattice, real and imaginary parts are pre-

harmonic on their respective black and white sublattices, etc. Unfortunately,

the product of two preholomorphic functions is no longer preholomorphic: e.g.,

while restrictions of 1, z, and z2 to the square lattice are preholomorphic, the

higher powers are only approximately so.

Situation with other possible definitions is similar, with much of the linear

complex analysis being easy to reproduce, and problems appearing when one

has to multiply preholomorphic functions. Pointwise multiplication cannot be

consistently defined, and though one can introduce convolution-type multipli-

cation, the possible constructions are non-local and cumbersome. Sometimes,

for different graphs and definitions, problems appear even earlier, with the first

derivative not being preholomorphic.

Our main reason for choosing the definition (6) is that it naturally appears in

probabilistic context. It was also noticed by Duffin that (6) nicely generalizes to

a larger family of rhombic lattices, where all the faces are rhombi. Equivalently,

one can speak of isoradial graphs, where all faces are inscribed into circles of

the same radius — an isoradial graph together with its dual forms a rhombic

lattice.

There are two main reasons to study this particular family. First, this is

perhaps the largest family of graphs for which the Cauchy-Riemann operator

admits a nice discretization. Indeed, restrictions of holomorphic functions to

such graphs are preholomorphic to higher orders. This was the reason for the

introduction of complex analysis on rhombic lattices by Duffin [Duf68] in late

sixties. More recently, the complex analysis on such graphs was studied for the

sake of probabilistic applications [Mer01, Ken02, CS08].

On the other hand, this seems to be the largest family where certain lattice

models, including the Ising model, have nice integrability properties. In par-

ticular, the critical point can be defined with weights depending only on the

local structure, and the star-triangle relation works out nicely. It seems that

the first appearance of related family of graphs in the probabilistic context

was in the work of Baxter [Bax78], where the eight vertex and Ising models

were considered on Z-invariant graphs, arising from planar line arrangements.

These graphs are topologically the same as the isoradial ones, and though they

are embedded differently into the plane, by [KS05] they always admit isora-

dial embeddings. In [Bax78] Baxter was not passing to the scaling limit, and

so the actual choice of embedding was immaterial for his results. However, his

choice of weights in the models would suggest an isoradial embedding, and

the Ising model was so considered by Mercat [Mer01], Boutilier and de Tilière

[BdT08, BdT09], Chelkak and the author [CS09]. Additionally, the dimer and

the uniform spanning tree models on such graphs also have nice properties, see

e.g. [Ken02].

We would also like to remark that rhombic lattices form a rather large family

of graphs. While not every topological quadrangulation (graph all of whose faces
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are quadrangles) admits a rhombic embedding, Kenyon and Schlenker [KS05]

gave a simple topological condition necessary and sufficient for its existence.

So this seems to be the most general family of graphs appropriate for our

subject, and most of what we discuss below generalizes to it (though for sim-

plicity we speak of the square and hexagonal lattices only).

3. Applications of Preholomorphic Functions

Besides being interesting in themselves, preholomorphic functions found sev-

eral diverse applications in combinatorics, analysis, geometry, probability and

physics.

After the original work of Kirchhoff, the first notable application was per-

haps the famous article [BSST40] of Brooks, Smith, Stone and Tutte, who used

preholomorphic functions to construct tilings of rectangles by squares.

Several applications to analysis followed, starting with a new proof of the

Riemann uniformization theorem by Ferrand [LF55]. Solving the discrete ver-

sion of the usual minimization problem, it is immediate to establish the ex-

istence of the minimizer and its properties, and then one shows that it has

a scaling limit, which is the desired uniformization. Duffin and his co-authors

found a number of similar applications, including construction of the Bergman

kernel by Dieter and Mastin [DM71]. There were also studies of discrete versions

of the multi-dimensional complex analysis, see e.g. Kiselman’s [Kis05].

In [Thu86] Thurston proposed circle packings as another discretization of

complex analysis. They found some beautiful applications, including yet an-

other proof of the Riemann uniformization theorem by Rodin and Sullivan

[RS87]. More interestingly, they were used by He and Schramm [HS93] in the

best result so far on the Koebe uniformization conjecture, stating that any

domain can be conformally uniformized to a domain bounded by circles and

points. In particular, they established the conjecture for domains with count-

ably many boundary components. More about circle packings can be learned

form Stephenson’s book [Ste05]. Note that unlike the discretizations discussed

above, the circle packings lead to non-linear versions of the Cauchy-Riemann

equations, see e.g. the discussion in [BMS05].

There are other interesting applications to geometry, analysis, combina-

torics, probability, and we refer the interested reader to the expositions by

Lovász [Lov04], Stephenson [Ste05], Mercat [Mer07], Bobenko and Suris [BS08].

In this note we are interested in applications to probability and statistical

physics. Already the Kirchhoff’s paper [Kir47] makes connection between the

Uniform Spanning Tree and preharmonic (and so preholomorphic) functions.

Connection of Random Walk to preharmonic functions was certainly known

to many researchers in early twentieth century, and figured implicitly in many

papers. It is explicitly discussed by Courant, Friedrichs and Lewy in [CFL28],

with preharmonic functions appearing as Green’s functions and exit probabili-

ties for the Random Walk.
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More recently, Kenyon found preholomorphic functions in the dimer model

(and in the Uniform Spanning Tree in a way different from the original consid-

erations of Kirchhoff). He was able to obtain many beautiful results about

statistics of the dimer tilings, and in particular, showed that those have a

conformally invariant scaling limit, described by the Gaussian Free Field, see

[Ken00, Ken01]. More about Kenyon’s results can be found in his expositions

[Ken04, Ken09]. An approximately preholomorphic function was found by the

author in the critical site percolation on the triangular lattice, allowing to prove

the Cardy’s formula for crossing probabilities [Smi01b, Smi01a].

Finally, we remark that various other discrete relations were observed in

many integrable two dimensional models of statistical physics, but usually no

explicit connection was made with complex analysis, and no scaling limit was

considered. Here we are interested in applications of integrability parallel to

that for the Random Walk and the dimer model above. Namely, once a pre-

holomorphic function is observed in some probabilistic model, we can pass to

the scaling limit, obtaining a holomorphic function. Thus, the preholomorphic

observable is approximately equal to the limiting holomorphic function, provid-

ing some knowledge about the model at hand. Below we discuss applications of

this philosophy, starting with the Ising model.

4. The Ising Model

In this Section we discuss some of the ways how preholomorphic functions

appear in the Ising model at criticality. The observable below was proposed in

[Smi06] for the hexagonal lattice, along with a possible generalization to O(N)

model. Similar objects appeared earlier in Kadanoff and Ceva [KC71] and in

Mercat [Mer01], though boundary values and conformal covariance, which are

central to us, were never discussed.

The scaling limit and properties of our observable on isoradial graphs were

worked out by Chelkak and the author in [CS09]. It is more appropriate to

consider it as a fermion or a spinor, by writing F (z)
√

dz, and with more general

setup one has to proceed in this way.

Earlier we constructed a similar fermion for the random cluster representa-

tion of the Ising model, see [Smi06, Smi10] and our joint work with Chelkak

[CS09] for generalization to isoradial graphs (and also independent work of Riva

and Cardy [RC06] for its physical connections). It has a simpler probabilistic

interpretation than the fermion in the spin representation, as it can be written

as the probability of the interface between two marked boundary points pass-

ing through a point inside, corrected by a complex weight depending on the

winding.

The fermion for the spin representation is more difficult to construct. Below

we describe it in terms of contour collections with distinguished points. Alter-

natively it corresponds to the partition function of the Ising model with a
√

z
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Figure 2. Left: configuration of spins in the Ising model with Dobrushin boundary

conditions, its contour representation, and an interface between two boundary points.

Right: an example of a configuration considered for the Fermionic observable: a num-

ber of loops and a contour connecting a to z. It can be represented as a spin configu-

ration with a monodromy at z.

monodromy at a given edge, corrected by a complex weight; or to a product of

order and disorder operators at neighboring site and dual site.

We will consider the Ising model on the mesh ε square lattice. Let Ωε be

a discretization of some bounded domain Ω ⊂ C. The Ising model on Ωε has

configurations σ which assign ±1 (or simply ±) spins σ(v) to vertices v ∈ Ωε

and Hamiltonian defined (in the absence of an external magnetic field) by

H(σ) = −

∑

〈u,v〉

σ(u)σ(v) ,

where the sum is taken over all edges 〈u, v〉 inside Ωε. Then the partition func-

tion is given by

Z =

∑

σ

exp (−βH(σ)) ,

and probability of a given spin configuration becomes

P (σ) = exp (−βH(σ)) /Z .

Here β ≥ 0 is the temperature parameter (behaving like the reciprocal of

the actual temperature), and Kramers and Wannier have established [KW41]

that its critical value is given by βc = log
(√

2 + 1
)

/2.

Now represent the spin configurations graphically by a collection of inter-

faces – contours on the dual lattice, separating plus spins from minus spins,

the so-called low-temperature expansion, see Figure 2. A contour collection is

a set of edges, such that an even number emanates from every vertex. In such

case the contours can be represented as a union of loops (possibly in a non-

unique way, but we do not distinguish between different representations). Note



604 Stanislav Smirnov

that each contour collection corresponds to two spin collections which are neg-

atives of each other, or to one if we fix the spin value at some vertex. The

partition function of the Ising model can be rewritten in terms of the contour

configurations ω as

Z =

∑

ω

xlength of contours .

Each neighboring pair of opposite spins contributes an edge to the contours,

and so a factor of x = exp(−2β) to the partition function. Note that the critical

value is xc = exp(−2βc) =
√

2− 1.

We now want to define a preholomorphic observable. To this effect we need

to distinguish at least one point (so that the domain has a non-trivial con-

formal modulus). One of the possible applications lies in relating interfaces to

Schramm’s SLE curves, in the simplest setup running between two boundary

points. To obtain a discrete interface between two boundary points a and b, we

introduce Dobrushin boundary conditions: + on one boundary arc and − on

another, see Figure 2. Then those become unique points with an odd number

of contour edges emanating from them.

Now to define our fermion, we allow the second endpoint of the interface to

move inside the domain. Namely, take an edge center z inside Ωε, and define

Fε(z) :=

∑

ω(a→z)

xlength of contours
W(ω(a→ z)) , (7)

where the sum is taken over all contour configurations ω = ω(a → z) which

have two exceptional points: a on the boundary and z inside. So the contour

collection can be represented (perhaps non-uniquely) as a collection of loops

plus an interface between a and z.

Furthermore, the sum is corrected by a Fermionic complex weight, depend-

ing on the configuration:

W(ω(a→ z)) := exp (−i s winding(γ, a→ z)) .

Here the winding is the total turn of the interface γ connecting a to z, counted

in radians, and the spin s is equal to 1/2 (it should not be confused with the

Ising spins ±1). For some collections the interface can be chosen in more than

one way, and then we trace it by taking a left turn whenever an ambiguity arises.

Another choice might lead to a different value of winding, but if the loops and

the interface have no “transversal” self-intersections, then the difference will be

a multiple of 4π and so the complex weight W is well-defined. Equivalently we

can write

W(ω(a→ z)) = λ# signed turns of γ , λ := exp

(

−is
π

2

)

,

see Figure 3 for weights corresponding to different windings.
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Figure 3. Examples of Fermionic weights one obtains depending on the winding of

the interface. Note that in the bottom left example there are two ways to trace the

interface from a to z without self-intersections, which give different windings ±2π,

but the same complex weight W = −1.

Remark 1. Removing complex weightW one retrieves the correlation of spins

on the dual lattice at the dual temperature x∗
, a corollary of the Kramers-

Wannier duality.

Remark 2. While such contour collections cannot be directly represented by

spin configurations, one can obtain them by creating a disorder operator, i.e. a

monodromy at z: when one goes one time around z, spins change their signs.

Our first theorem is the following, which is proved for general isoradial

graphs in [CS09], with a shorter proof for the square lattice given in [CS10]:

Theorem 1 (Chelkak, Smirnov). For Ising model at criticality, F is a preholo-

morphic solution of a Riemann boundary value problem. When mesh ε→ 0,

Fε(z) /
√

ε ⇒
√

P ′(z) inside Ω,

where P is the complex Poisson kernel at a: a conformal map Ω → C+ such

that a 7→ ∞. Here both sides should be normalized in the same chart around b.

Remark 3. For non-critical values of x observable F becomes massive pre-

holomorphic, satisfying the discrete analogue of the massive Cauchy-Riemann

equations: ∂̄ F = im(x− xc)F̄ , cf. [MS09].

Remark 4. Ising model can be represented as a dimer model on the Fisher

graph. For example, on the square lattice, one first represents the spin configu-

ration as above — by the collection of contours on the dual lattice, separating
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Figure 4. Fisher graph for a region of the square lattice, a spin configuration and a

corresponding dimer configuration, with dimers represented by the bold edges.

+ and − spins. Then the dual lattice is modified with every vertex replaced by

a “city” of six vertices, see Figure 4. It is easy to see that there is a natural

bijection between contour configurations on the dual square lattice and dimer

configuration on its Fisher graph.

Then, similarly to the work of Kenyon for the square lattice, the coupling

function for the Fisher lattice will satisfy difference equations, which upon ex-

amination turn out to be another discretization of Cauchy-Riemann equations,

with different projections of the preholomorphic function assigned to six ver-

tices in a “city”. One can then reinterpret the coupling function in terms of

the Ising model, and this is the approach taken by Boutilier and de Tilière

[BdT08, BdT09].

This is also how the author found the observable discussed in this Section,

observing jointly with Kenyon in 2002 that it has the potential to imply the

convergence of the interfaces to the Schramm’s SLE curve.

The key to establishing Theorem 1 is the observation that the function

F is preholomorphic. Moreover, it turns out that F satisfies a stronger form

of preholomorphicity, which implies the usual one, but is better adapted to

fermions.

Consider the function F on the centers of edges. We say that F is strongly

(or spin) preholomorphic if for every centers u and v of two neighboring edges

emanating from a vertex w, we have

Proj(F (v), 1/
√

α) = Proj(F (u), 1/
√

α) ,

where α is the unit bisector of the angle uwv, and Proj(p, q) denotes the or-

thogonal projection of the vector p on the vector q. Equivalently we can write

F (v) + ᾱ F (v) = F (u) + ᾱ F (u) . (8)
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contributes λC1 to F (v)

���
αs s ss

a w u

v

←→ ���
αs s ss

a w u

v

contributes 1C1 to F (u)

���
αs s ss

a w u

v

contributes λxC2 to F (v)

←→ ���
αs s ss

a w u

v

contributes λ2 C2 to F (u)

Figure 5. Involution on the Ising model configurations, which adds or erases half-

edges vw and uw. There are more pairs, but their relative contributions are always

easy to calculate and each pair taken together satisfies the discrete Cauchy-Riemann

equations. Note that with the chosen orientation constants C1 and C2 above are real.

This definition implies the classical one for the square lattice, and it also easily

adapts to the isoradial graphs. Note that for convenience we assume that the

interface starts from a in the positive real direction as in Figure 2, which slightly

changes weights compared to the convention in [CS09].

The strong preholomorphicity of the Ising model fermion is proved by con-

structing a bijection between configurations included into F (v) and F (u). In-

deed, erasing or adding half-edges wu and wv gives a bijection ω ↔ ω̃ between

configuration collections {ω(u)} and {ω(v)}, as illustrated in Figure 5. To check

(8), it is sufficient to check that the sum of contributions from ω and ω̃ satisfies

it. Several possible configurations can be found, but essentially all boil down to

the two illustrated in Figure 5.

Plugging the contributions from Figure 5 into the equation (8), we are left

to check the following two identities:

λ+ λλ̄ = 1 + λ1̄ , λx+ λλx = λ2
+ λλ̄2 . (9)

The first identity always holds, while the second one is easy to verify when

x = xc =
√

2 − 1 and λ = exp(−πi/4). Note that in our setup on the square

lattice λ (or the spin s) is already fixed by the requirement that the complex

weight is well-defined, and so the second equation in (9) uniquely fixes the

allowed value of x. In the next Section we will discuss a more general setup,

allowing for different values of the spin, corresponding to other lattice models.

To determine F using its preholomorphicity, we need to understand its be-

havior on the boundary. When z ∈ ∂Ωε, the winding of the interface connect-

ing a to z inside Ωε is uniquely determined, and coincides with the winding of
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the boundary itself. This amounts to knowing Arg(F ) on the boundary, which

would be sufficient to determine F knowing the singularity at a or the normal-

ization at b.

In the continuous setting the condition obtained is equivalent to the Rie-

mann Boundary Value Problem (a homogeneous version of the Riemann-

Hilbert-Privalov BVP)

Im

(

F (z) · (tangent to ∂Ω)
1/2

)

= 0 , (10)

with the square root appearing because of the Fermionic weight. Note that the

homogeneous BVP above has conformally covariant solutions (as

√

dz-forms),

and so is well defined even in domains with fractal boundaries. The Riemann

BVP (10) is clearly solved by the function

√

P ′

a(z), where P is the Schwarz

kernel at a (the complex version of the Poisson kernel), i.e. a conformal map

P : Ω→ C+ , a 7→ ∞ .

Showing that on the lattice Fε satisfies a discretization of the Riemann BVP

(10) and converges to its continuous counterpart is highly non-trivial and a pri-

ori not guaranteed – there exist “logical” discretizations of the Boundary Value

Problems, whose solutions have degenerate or no scaling limits. We establish

convergence in [CS09] by considering the primitive
∫ z

z0
F 2

(u)du, which satisfies

the Dirichlet BVP even in the discrete setting. The big technical problem is

that in the discrete case F 2
is no longer preholomorphic, so its primitive is a

priori not preholomorphic or even well-defined. Fortunately, in our setting the

imaginary part is still well-defined, so we can set

Hε(z) :=
1

2ε
Im

∫ z

F (z)2dz .

While the function H is not exactly preharmonic, it is approximately so, van-

ishes exactly on the boundary, and is positive inside the domain. This allows

to complete the (at times quite involved) proof. A number of non-trivial dis-

crete estimates is called for, and the situation is especially difficult for general

isoradial graphs. We provide the needed tools in a separate paper [CS08].

Though Theorem 1 establishes convergence of but one observable, the latter

(when normalized at b) is well behaved with respect to the interface traced from

a. So it can be used to establish the following, see [CS10]:

Corollary 1. As mesh of the lattice tends to zero, the critical Ising inter-

face in the discretization of the domain Ω with Dobrushin boundary conditions

converges to the Schramm’s SLE(3) curve.

Convergence is almost immediate in the topology of (probability measures

on the space of) Loewner driving functions, but upgrading to convergence of

curves requires extra estimates, cf. [KS09, DCHN09, CS10]. Once interfaces
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are related to SLE curves, many more properties can be established, including

values of dimensions and scaling exponents.

But even without appealing to SLE, one can use preholomorphic functions

to a stronger effect. In a joint paper with Hongler [HS10] we study a similar

observable, when both ends of the interface are allowed to be inside the domain.

It turns out to be preholomorphic in both variables, except for the diagonal,

and so its scaling limit can be identified with the Green’s function solving

the Riemann BVP. On the other hand, when two arguments are taken to be

nearby, one retrieves the probability of an edge being present in the contour

representation, or that the nearby spins are different. This allows to establish

conformal invariance of the energy field in the scaling limit:

Theorem 2 (Hongler, Smirnov). Let a ∈ Ω and 〈xε, yε〉 be the closest edge

from a ∈ Ωε. Then, as ε→ 0, we have

E+

[

σε

xσ
ε

y

]

=

√

2

2
+

lΩ (a)

π
· ε+ o (ε) ,

Efree

[

σε

xσ
ε

y

]

=

√

2

2
−

lΩ (a)

π
· ε+ o (ε) ,

where the subscripts + and free denote the boundary conditions and lΩ is the

element of the hyperbolic metric on Ω.

This confirms the Conformal Field Theory predictions and, as far as we

know, for the first time provides the multiplicative constant in front of the

hyperbolic metric.

These techniques were taken further by Hongler in [Hon10], where he showed

that the (discrete) energy field in the critical Ising model on the square lattice

has a conformally covariant scaling limit, which can be then identified with

the corresponding Conformal Field Theory. This was accomplished by showing

convergence of the discrete energy correlations in domains with a variety of

boundary conditions to their continuous counterparts; the resulting limits are

conformally covariant and are determined exactly. Similar result was obtained

for the scaling limit of the spin field on the domain boundary.

5. The O(N) Model

The Ising preholomorphic function was introduced in [Smi06] in the setting of

general O(N) models on the hexagonal lattice. It can be further generalized to a

variety of lattice models, see the work of Cardy, Ikhlef, Rajabpour [RC07, IC09].

Unfortunately, the observable seems only partially preholomorphic (satisfying

only some of the Cauchy-Riemann equations) except for the Ising case. One

can make an analogy with divergence-free vector fields, which are not a priori

curl-free.
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The argument in the previous Section was adapted to the Ising case, and

some properties remain hidden behind the notion of the strong holomorphicity.

Below we present its version generalized to the O(N) model, following our joint

work [DCS10] with Duminil-Copin. While for N 6= 1 we only prove that our

observable is divergence-free, it still turns out to be enough to deduce some

global information, establishing the Nienhuis conjecture on the exact value of

the connective constant for the hexagonal lattice:

Theorem 3 (Duminil-Copin, Smirnov). On the hexagonal lattice the number

C(k) of distinct simple length k curves from the origin satisfies

lim
k→∞

1

k
logC(k) = log

√

2 +

√

2 . (11)

Self-avoiding walks on a lattice (those without self-intersections) were pro-

posed by chemist Flory [Flo53] as a model for polymer chains, and turned out

to be an interesting and extensively studied object, see the monograph [MS93].

Using Coulomb gas formalism, physicist Nienhuis argued that the connective

constant of the hexagonal lattice is equal to

√

2 +
√

2, meaning that (11) holds.

He even proposed better description of the asymptotic behavior:

C(k) ≈

(√

2 +

√

2

)k

k11/32, k →∞ . (12)

Note that while the exponential term with the connectivity constant is lattice-

dependent, the power law correction is supposed to be universal.

Our proof is partially motivated by Nienhuis’ arguments, and also starts

with considering the self-avoiding walk as a special case of O(N) model at

N = 0. While a “half-preholomorphic” observable we construct does not seem

sufficient to imply conformal invariance in the scaling limit, it can be used to

establish the critical temperature, which gives the connective constant.

The general O(N) model is defined for positive integer values of N , and is

a generalization of the Ising model (to which it specializes for N = 1), with

±1 spins replaced by points on a sphere in the N -dimensional space. We work

with the graphical representation, which is obtained using the high-temperature

expansion, and makes the model well defined for all non-negative values of N .

We concentrate on the hexagonal lattice in part because it is trivalent and

so at most one contour can pass through a vertex, creating no ambiguities.

This simplifies the reasoning, though general graphs can also be addressed

by introducing additional weights for multiple visits of vertices. We consider

configurations ω of disjoint simple loops on the mesh ε hexagonal lattice inside

domain Ωε, and two parameters: loop-weight N ≥ 0 and (temperature-like)

edge-weight x > 0. Partition function is then given by

Z =

∑

ω

N# loops xlength of contours .
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a

b

x

x

Figure 6. The high-temperature expansion of the O(N) model leads to a gas of disjoint

simple loops. Probability of a configuration is proportional to N
# loops

x
length. We

study it with Dobrushin boundary conditions: besides loops, there is an interface

between two boundary points a and b.

A typical configuration is pictured in Figure 6, where we introduced Dobrushin

boundary conditions: besides loops, there is an interface γ joining two fixed

boundary points a and b. It was conjectured by Kager and Nienhuis [KN04]

that in the interval N ∈ [0, 2] the model has conformally invariant scaling limits

for x = xc(N) := 1/
√

2 +
√

2−N and x ∈ (xc(N),+∞). The two different

limits correspond to dilute/dense regimes, with the interface γ conjecturally

converging to the Schramm’s SLE curves for an appropriate value of κ ∈ [8/3, 4]

and κ ∈ [4, 8] correspondingly. The scaling limit for low temperatures x ∈ (0, xc)

is not conformally invariant.

Note that for N = 1 we do not count the loops, thus obtaining the low-

temperature expansion of the Ising model on the dual triangular lattice. In

particular, the critical Ising corresponds to x = 1/
√

3 by the work [Wan50] of

Wannier, in agreement with Nienhuis predictions. And for x = 1 one obtains

the critical site percolation on triangular lattice (or equivalently the Ising model

at infinite temperature). The latter is conformally invariant in the scaling limit

by [Smi01b, Smi01a].

Note also that the Dobrushin boundary conditions make the model well-

defined for N = 0: then we have only one interface, and no loops. In the dilute
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a

{

z
{

Figure 7. To obtain the parafermionic observable in the O(N) model we consider

configurations with an interface joining a boundary point z to an interior point z and

weight them by a complex weight depending on the winding of the interface.

regime this model is expected to be in the universality class of the self-avoiding

walk.

Analogously to the Ising case, we define an observable (which is now a para-

fermion of fractional spin) by moving one of the ends of the interface inside the

domain. Namely, for an edge center z we set

Fε(z) :=

∑

ω(a→z)

xlength of contours
W(ω(a→ z)) , (13)

where the sum is taken over all configurations ω = ω(a→ z) which have disjoint

simple contours: a number of loops and an interface γ joining two exceptional

points, a on the boundary and z inside. As before, the sum is corrected by a

complex weight with the spin s ∈ R:

W(ω(a→ z)) := exp (−i s winding(γ, a→ z)) ,

equivalently we can write

W(ω(a→ z)) = λ# signed turns of γ , λ := exp

(

−is
π

3

)

.

Note that on hexagonal lattice one turn corresponds to π/3, hence the difference

in the definition of λ.



Discrete Complex Analysis and Probability 613

C1 to F (p)

s
a

c ss
s
v

xλ̄C1 to F (q)

s
a

c ss
s
v

xλC1 to F (r)

s
a

c ss
s
v

N C2 to F (p)

s
a

c ss
s
v

λ̄4 C2 to F (q)

s
a

c ss
s
v

λ4 C2 to F (r)

s
a

c ss
s
v

Figure 8. Configurations with the interface ending at one of the three neighbors of v

are grouped into triplets by adding or removing half-edges around v. Two essential

examples of triplets are pictured above, along with their relative contributions to the

identity (13).

Our key observation is the following

Lemma 4. For N ∈ [0, 2], set 2 cos (θ) = N with parameter θ ∈ [0, π/2]. Then

for

s =
π − 3θ

4π
, x−1

= 2 cos
(

π+θ

4

)

=

√

2−
√

2−N, or (14)

s =
π + 3θ

4π
, x−1

= 2 cos
(

π−θ

4

)

=

√

2 +
√

2−N , (15)

the observable F satisfies the following relation for every vertex v inside Ωε:

(p− v)F (p) + (q − v)F (q) + (r − v)F (r) = 0 , (16)

where p, q, r are the mid-edges of the three edges adjacent to v.

Above solution (14) corresponds to the dense, and (15) – to the dilute

regime. Note that identity (16) is a form of the first Kirchhoff’s law, but apart

from the Ising case N = 1 we cannot verify the second one.

To prove Lemma 4, we note that configurations with an interface arriving

at p, q or r can be grouped in triplets, so that three configurations differ only in

immediate vicinity of v, see Figure 8. It is enough then to check that contribu-

tions of three configurations to (16) sum up to zero. But the relative weights of

configurations in a triplet are easy to write down as shown in Figure 8, and the

coefficients in the identity (16) are proportional to the three cube roots of unity:

1, τ := exp(i2π/3), τ̄ (if the neighbors of v are taken in the counterclockwise



614 Stanislav Smirnov

order). Therefore we have to check just two identities:

N + τ λ̄4
+ τ̄ λ4

= 0 ,

1 + τ xλ̄ + τ̄ xλ = 0 .

Recalling that λ = exp (−isπ/3), the equations above can be recast as

−

2π

3
− 4s

π

3
= ± (π − θ) + 2πk , k ∈ Z ,

x = − 1

/(

2 cos

(

(2 + s)π

3

))

.

The first equation implies that

s = ±

(

−

3

4
+

3θ

4π

)

−

1

2
−

3

2
k , k ∈ Z , (17)

and the second equation then determines the allowed value of x uniquely. Most

of the solutions of (17) lead to observables symmetric to the two main ones,

which are provided by solutions to the equations (14) and (15).

When we set N = 0, there are no loops, and configurations contain just an

interface from a to z, weighted by xlength
. This corresponds to taking θ = π/2

and one of the solutions is given by s = 5/8 and xc = 1/
√

2 +
√

2, as predicted

by Nienhuis. To prove his prediction, we observe that summing the identity

(16) over all interior vertices implies that

∑

z∈∂Ωε

F (z)η(z) = 0 ,

where the sum taken over the centers z of oriented edges η(z) emanating from

the discrete domain Ωε into its exterior. Since F (a) = 1 by definition, we

conclude that F for other boundary points sums up to 1. As in the Ising model,

the winding on the boundary is uniquely determined, and (for this particular

critical value of x), one observes that considering the real part of F we can

get rid of the complex weights, replacing them by explicit positive constants

(depending on the slope of the boundary). Thus we obtain an equation

∑

z∈∂Ωε\{a}

∑

ω(a→z)

xlength of contours
c � 1 ,

regardless of the size of the domain Ωε. A simple counting argument then shows

that the series

∑

k

C(k) xk
=

∑

simple walks from a inside C

xlength ,

converges when x < xc and diverges when x > xc, clearly implying the conjec-

ture.
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Note that establishing the holomorphicity of our observable in the scaling

limit would allow to relate self-avoiding walk to the Schramm’s SLE with κ =

8/3 and together with the work [LSW04] of Lawler, Schramm and Werner to

establish the more precise form (12) of the Nienhuis prediction.

6. What’s Next

Below we present a list of open questions. As before, we do not aim for com-

pleteness, rather we highlight a few directions we find particularly intriguing.

Question 1. As was discussed, discrete complex analysis is well developed for

isoradial graphs (or rhombic lattices), see [Duf68, Mer01, Ken02, CS08]. Is there

a more general discrete setup where one can get similar estimates, in particular

convergence of preholomorphic functions to the holomorphic ones in the scaling

limit? Since not every topological quadrangulation admits a rhombic embedding

[KS05], can we always find another embedding with a sufficiently nice version

of discrete complex analysis? Same question can be posed for triangulations,

with variations of the first definition by Isaacs (5), like the ones in the work of

Dynnikov and Novikov [DN03] being promising candidates.

Question 2. Variants of the Ising observable were used by Hongler and Kytölä

to connect interfaces in domains with more general boundary conditions to more

advanced variants of SLE curves, see [HK09]. Can one use some version of this

observable to describe the spin Ising loop soup by a collection of branching

interfaces, which converge to a branching SLE tree in the scaling limit? Similar

argument os possible for the random cluster representation of the Ising model,

see [KS10]. Can one construct the energy field more explicitly than in [Hon10],

e.g. in the distributional sense? Can one construct other Ising fields?

Question 3. So far “half-preholomorphic” parafermions similar to ones dis-

cussed in this paper have been found in a number of models, see [Smi06, RC06,

RC07, IC09], but they seem fully preholomorphic only in the Ising case. Can we

find the other half of the Cauchy-Riemann equations, perhaps for some mod-

ified definition? Note that it seems unlikely that one can establish conformal

invariance of the scaling limit operating with only half of the Cauchy-Riemann

equations, since there is no conformal structure present.

Question 4. In the case of the self-avoiding walk, an observable satisfying

only a half of the Cauchy-Riemann equations turned out to be enough to de-

rive the value of the connectivity constant [DCS10]. Since similar observables

are available for all other O(N) models, can we use them to establish the critical

temperature values predicted by Nienhuis? Our proof cannot be directly trans-

fered, since some counting estimates use the absence of loops. Similar question

can be asked for other models.
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Question 5. If we cannot establish the preholomorphicity of our observables

exactly, can we try to establish it approximately? With appropriate estimates

that would allow to obtain holomorphic functions in the scaling limit and hence

prove conformal invariance of the models concerned. Note that such more gen-

eral approach worked for the critical site percolation on the triangular lattice

[Smi01b, Smi01a], though approximate preholomorphicity was a consequence

of exact identities for quantities similar to discrete derivatives.

Question 6. Can we find other preholomorphic observables besides ones men-

tioned here and in [Smi06]? It is also peculiar that all the models where preholo-

morphic observables were found so far (the dimer model, the uniform spanning

tree, the Ising model, percolation, etc.) can be represented as dimer models.

Are there any models in other universality classes, admitting a dimer represen-

tation? Can then Kenyon’s techniques [Ken04, Ken09] be used to find preholo-

morphic observables by considering the Kasteleyn’s matrix and the coupling

function?

Question 7. Throughout this paper we were concerned with linear discretiza-

tions of the Cauchy-Riemann equations. Those seem more natural in the prob-

abilistic context, in particular they might be easier to relate to the SLE martin-

gales, cf. [Smi06]. However there are also well-known non-linear versions of the

Cauchy-Riemann equations. For example, the following version of the Hirota

equation for a complex-valued function F arises in the context of the circle

packings, see e.g. [BMS05]:

(F (z + iε)− F (z − ε)) (F (z − iε)− F (z + ε))

(F (z + iε)− F (z + ε)) (F (z − iε)− F (z − ε))
= − 1 . (18)

Can we observe this or a similar equation in the probabilistic context and use

it to establish conformal invariance of some model? Note that plugging into the

equation (18) a smooth function, we conclude that to satisfy it approximately

it must obey the identity

(∂xF (z))
2
+ (∂yF (z))

2
= 0 .

So in the scaling limit (18) can be factored into the Cauchy-Riemann equations

and their complex conjugate, thus being in some sense linear. It does not seem

possible to obtain “essential” non-linearity using just four points, but using five

points one can create one, as in the next question.

Question 8. A number of non-linear identities was discovered for the correla-

tion functions in the Ising model, starting with the work of Groeneveld, Boel

and Kasteleyn [GBK78, BK78]. We do not want to analyze the extensive liter-

ature to-date, but rather pose a question: can any of these relations be used to

define discrete complex structures and pass to the scaling limit? In two of the

early papers by McCoy, Wu and Perk [MW80, Per80], a quadratic difference

relation was observed in the full plane Ising model first on the square lattice,
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and then on a general graph. To better adapt to our setup, we rephrase this

relation for the correlation C(z) of two spins (one at the origin and another

at z) in the Ising model at criticality on the mesh ε square lattice. In the full

plane, one has

C(z + iε)C(z − iε) + C(z + ε)C(z − ε) = 2C(z)2 . (19)

Note that C is a real-valued function, and the equation (19) is a discrete form

of the identity

C(z)∆C(z) + |∇C(z)|
2
= 0 .

The latter is conformally invariant, and is solved by moduli of analytic func-

tions. Can one write an analogous to (19) identity in domains with boundary,

perhaps approximately? Can one deduce conformally invariant scaling limit of

the spin correlations in that way?

Question 9. Recently there was a surge of interest in random planar graphs

and their scaling limits, see e.g. [DS09, LGP08]. Can one find observables

on random planar graphs (weighted by the partition function of some lat-

tice model) which after an appropriate embedding (e.g. via a circle packing

or a piecewise-linear Riemann surface) are preholomorphic? This would help

to show that planar maps converge to the Liouville Quantum Gravity in the

scaling limit.

Question 10. Approach to the two-dimensional integrable models described

here is in several aspects similar to the older approaches based on the Yang-

Baxter relations [Bax89]. Some similarities are discussed in Cardy’s paper

[Car09]. Can one find a direct link between the two approaches? It would also

be interesting to find a link to the three-dimensional consistency relations as

discussed in [BMS09].

Question 11. Recently Kenyon investigated the Laplacian on the vector bun-

dles over graphs in relation to the spanning trees [Ken10]. Similar setup seems

natural for the Ising observable we discuss. Can one obtain more information

about the Ising and other models by studying difference operators on vector

bundles over the corresponding graphs?

Question 12. Can anything similar be done for the three-dimensional models?

While preholomorphic functions do not exist here, preharmonic vector fields are

well-defined and appear naturally for the Uniform Spanning Tree and the Loop

Erased Random Walk. To what extent can they be used? Can one find any

other difference equations in three-dimensional lattice models?
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