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Packing dimension of mean porous measures

D. Beliaev, E. Järvenpää, M. Järvenpää, A. Käenmäki, T. Rajala,
S. Smirnov and V. Suomala

Abstract

We prove that the packing dimension of any mean porous Radon measure on Rd may be estimated
from above by a function which depends on mean porosity. The upper bound tends to d − 1 as
mean porosity tends to its maximum value. This result was stated in D. B. Beliaev and
S. K. Smirnov [‘On dimension of porous measures’, Math. Ann. 323 (2002) 123–141], and in
a weaker form in E. Järvenpää and M. Järvenpää [‘Porous measures on Rn: local structure
and dimensional properties’, Proc. Amer. Math. Soc. (2) 130 (2002) 419–426], but the proofs
are not correct. Quite surprisingly, it turns out that mean porous measures are not necessarily
approximable by mean porous sets. We verify this by constructing an example of a mean porous
measure μ on R such that μ(A) = 0 for all mean porous sets A ⊂ R.

1. Introduction

Intuitively, it seems obvious that if a set contains relatively large holes at all small scales, then
the dimension of the set should be smaller than that of the ambient space. This observation
was generalized and made into a quantitative form by Mattila [9] in terms of a concept called
porosity which describes the sizes of holes at all small scales (for the definition see Section 2).
Mattila proved that if the porosity of a subset of Rd is close to its maximum value 1

2 , then
its Hausdorff dimension cannot be much bigger than d − 1. The correct asymptotic behaviour
was established by Salli [11]. He also showed that Hausdorff dimension may be replaced by
packing dimension, and moreover, by box counting dimension under the assumption that the
set is uniformly porous.

The above-mentioned result for Hausdorff dimension fails if the set contains large holes only
at sequences of arbitrarily small scales; there are examples of such sets in Rd with Hausdorff
dimension d [10]. Nevertheless, the assumption that the set has relatively large holes at all
small scales may be weakened to obtain an upper bound for Hausdorff dimension, or more
generally for packing dimension. In fact, it is sufficient to suppose that a certain percentage
of scales contains holes. This leads to the concept of mean porosity (for the definition see
Section 2). Dimensional properties of such sets were considered by Koskela and Rohde [8] in
the case of small mean porosity, and by Beliaev and Smirnov [1] in the case of large mean
porosity. For other related results, see [7].

In this paper, the emphasis is given to packing dimensions of mean porous measures (for
the definition see Section 2). Porous measures were introduced by Eckmann, Järvenpää and
Järvenpää [3] while the analogue of Mattila’s result was verified for porous measures in [5].
Note that in [5] the results are claimed for packing dimension but the argument works only
for Hausdorff dimension as explained in [6].
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The study of mean porous measures was pioneered by Beliaev and Smirnov [1]. In [1] the
proof of the statement that the same upper bound which is valid for packing dimensions of
mean porous sets holds for mean porous measures as well is based on a proposition claiming
that mean porous measures are approximable by mean porous sets. However, this is not the
case: in Theorem 4.1 we construct a mean porous measure μ such that all mean porous sets
have zero μ-measure. The main purpose of this paper is to develop a new method to show that
the statements of [1, 5] are true (see Theorem 3.1) even though the proofs are not correct.

The paper is organized as follows. In Section 2 we discuss the basic concepts. Section 3 is
dedicated to the proof of our main result. Besides this, we illustrate by an example that the
upper bound which we obtain is asymptotically the best possible one. Finally, in Section 4 we
construct an example of a mean porous measure that is not approximable by mean porous sets.

2. Basic concepts

In this section, we give the basic definitions used throughout the paper. Intuitively, the porosity
of a set gives for all small scales the relative radius of the largest ball which fits into a reference
ball centred at the set and which does not intersect the set. Let A ⊂ Rd. For all x ∈ Rd and
r > 0, we define

por(A, x, r) = sup{α � 0 : B(y, αr) ⊂ B(x, r) \ A for some y ∈ Rd}.
Here B(x, r) is the closed ball with centre at x and radius r. Clearly, 0 � por(A, x, r) � 1

2 for
all x ∈ A. Given 0 � α � 1

2 , the set A is said to be α-porous at x if

lim inf
r→0

por(A, x, r) � α.

Moreover, A is α-porous if it is α-porous at every point x ∈ A.
For measures, the corresponding concepts are defined as follows. Let μ be a Radon measure

on Rd. For all x ∈ Rd and for all positive real numbers r and ε, set

por(μ, x, r, ε) = sup{α � 0 : there is z ∈ Rd such that
B(z, αr) ⊂ B(x, r) and μ(B(z, αr)) � εμ(B(x, r))}.

Given α � 0, the measure μ is α-porous at a point x ∈ Rd if

lim
ε→0

lim inf
r→0

por(μ, x, r, ε) � α.

The order of taking limits is important here: if we changed it we would obtain the porosity of
sptμ, the support of μ. Finally, the measure μ is α-porous if there is A ⊂ Rd, with μ(A) > 0,
such that μ is α-porous at every point x ∈ A. It is not difficult to see that in this case 0 � α � 1

2 .
For more information on porosity of measures, see [3].

Larger classes of mean porous sets and measures are obtained by demanding that a certain
percentage of scales, not necessarily all small ones, are porous. Given α � 0 and a positive
integer j, the set A is α-porous for scale j at a point x ∈ Rd whenever por(A, x, 2−j) � α. For
0 < p � 1, the set A is called mean (α, p)-porous at a point x ∈ Rd if

lim inf
i→∞

#{1 � j � i : por(A, x, 2−j) � α}
i

� p.

Here the cardinality of a set is denoted by #. We say that A is mean (α, p)-porous if it is mean
(α, p)-porous at every point x ∈ A. The measure μ, in turn, is mean (α, p)-porous at x if

lim
ε→0

lim inf
i→∞

#{1 � j � i : por(μ, x, 2−j , ε) � α}
i

� p.

Finally, μ is mean (α, p)-porous if there is A ⊂ Rd with μ(A) > 0 such that μ is mean (α, p)-
porous at all points x ∈ A.
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The packing dimension, dimp, of a Radon measure μ on Rd is defined in terms of local
dimensions as follows:

dimp μ = μ- ess inf
x∈Rd

dimloc μ(x),

where

dimloc μ(x) = lim sup
r↓0

log(μ(B(x, r)))
log r

and μ- ess inf means the essential infimum with respect to μ. Equivalently, the packing
dimension of μ is given by means of packing dimensions of Borel sets with positive μ-measure
[2] as follows:

dimp μ = inf{dimp A : A is a Borel set with μ(A) > 0}.

Remark 2.1. Replacing the essential infimum by the essential supremum in the above
definition leads to the concept of upper packing dimension. Using the fact that restricting a
measure will not decrease the porosity [3], we see that Theorem 3.1 is valid for the upper
packing dimension of μ as well provided that μ is mean porous μ-almost everywhere.

3. Packing dimension of measures with large mean porosity

In this section we prove the following packing dimension estimate for mean porous measures.

Theorem 3.1. Let 0 � α � 1
2 and 0 < p � 1. There exists a constant C depending only

on d such that for all mean (α, p)-porous Radon measures μ on Rd we have

dimp μ � d − p +
C

log(1/(1 − 2α))
.

At the end of this section, we give a construction (Example 3.9) which indicates that the
upper bound of Theorem 3.1 is asymptotically the best possible one as α tends to 1

2 . The proof
of Theorem 3.1 is given as a series of lemmas. The first one serves as a key tool in the proof of
our main result. We use the symbol rQ for the side-length of a cube Q ⊂ Rd.

Lemma 3.2. Let m, i0 ∈ N and D > 0. Let μ be a Radon measure on Rd with 0 < μ(Rd) <
∞. Assume that all disjoint collections Q of half-open 2m-adic cubes with side-length at most
2−mi0 have the following property: for all Q ∈ Q there is 0 < τ(Q) < D such that∑

Q∈Q
r

τ(Q)
Q μ(Q)1−(τ(Q)/D) < μ(Rd).

Then we have

dimp μ � D.

Proof. Suppose to the contrary that dimp μ > D. Then dimloc μ(x) > D for μ-almost every
x ∈ Rd. Recall from [2, Lemma 2.3] that for μ-almost all x ∈ Rd the local dimension dimloc μ(x)
may be calculated using half-open 2m-adic cubes containing x instead of balls B(x, r). Hence,
for μ-almost every x ∈ Rd we may choose a cube Qx containing x and with side-length 2−mi

for some i > i0 such that μ(Qx) < rD
Qx

. Let Q be a disjoint collection of such cubes covering
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μ-almost all points of Rd. Then we have

μ(Rd) =
∑
Q∈Q

μ(Q)τ(Q)/Dμ(Q)1−τ(Q)/D <
∑
Q∈Q

r
τ(Q)
Q μ(Q)1−τ(Q)/D < μ(Rd),

which is a contradiction.

The following lemma shows that when cubes Q are of the same size we can approximate the
sums

∑
Q rτ

Qμ(Q)1−τ/D from above by distributing the measure evenly on the cubes.

Lemma 3.3. Let D > 0. Assume that 0 < τ < D and Q1, . . . , QN ⊂ Rd are disjoint cubes
with side-length r. Then for any Radon measure μ on Rd, we have

N∑
j=1

rτμ(Qj)1−τ/D � Nτ/Drτμ

⎛
⎝ N⋃

j=1

Qj

⎞
⎠

1−τ/D ⎛
⎝= Nrτ

(
μ(

⋃N
j=1 Qj)
N

)1−τ/D
⎞
⎠ .

Proof. Since the cubes Q1, . . . , QN are of the same size, the claim follows directly from
Hölder’s inequality as follows:

N∑
j=1

rτμ(Qj)1−τ/D = rτ
N∑

j=1

μ(Qj)1−τ/D � Nτ/Drτ

⎛
⎝ N∑

j=1

μ(Qj)

⎞
⎠

1−τ/D

.

The proof of the next lemma is based on straightforward geometric arguments. The boundary
of a set A ⊂ Rd is denoted by ∂A.

Lemma 3.4. Let k ∈ N and let Q ⊂ Rd be a dyadic cube. If B1, B2, . . . , Bn are closed balls
with radii at least

√
drQ, then ∂(Q \

⋃n
i=1 Bi) may be covered by c2k(d−1) dyadic cubes of

side-length 2−krQ. Here c = c(d) is a positive and finite constant depending only on d.

Proof. Let Bi = B(xi, ri) and Γ = ∂(Q \
⋃n

i=1 Bi). We may assume that Bi ∩ Q �= ∅ and
xi �∈ Q since ri �

√
drQ. Denote the faces of Q by F1, . . . , F2d, and divide the balls Bi into 2d

disjoint sets Aj such that Bi ∈ Aj provided Fj is the closest face to xi. Here the distance is
measured from the centre of a face. (If there are several faces that are equally close choose one
of those.) Fix j ∈ {1, . . . , 2d} and consider the part of Γ determined by Aj . Since ri �

√
drQ,

we have that Fj ⊂ Bi if xi is sufficiently close to Fj . Hence, there is a constant γ > 0 such that
the angle between the normal of Fj and the tangent plane of Bi is larger than γ at any point in
Γ ∩ Bi for all Bi ∈ Aj . The minimum point for this angle is obtained in the following manner.
Consider a vertex v of Q contained in Fj . Denote by v′ the vertex of Fj which is opposite to
v. Being opposite to v means that the line segment determined by v and v′ is a diagonal of
Fj . Let L be the line determined by the diagonal of Q containing v. Move along L away from
Q up to the point y where the distance to v′ equals

√
drQ. Now y is a minimum point that

determines γ. We conclude that there is a bi-Lipschitz injection from ∪Bi∈Aj
Bi ∩ Γ to Fj such

that the Lipschitz constants depend only on γ. This gives the claim.

Before stating the rest of the auxiliary results, we introduce the notation we need throughout
the remaining part of this section.
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Consider the smallest integer l such that 4
√

d � 2l. For 15/32 < α < 1/2, let k = k(α) be
the unique positive integer for which we have

√
d2−k−1 � (1 − 2α)2l <

√
d2−k. (3.1)

For all i ∈ N, the collection of all half-open 2k-adic cubes of side-length 2−ki is denoted by Qi.
Moreover, if Q ∈ Qi and Q′ ∈ Qi+n, then we use the notation Q′ ≺n Q provided that Q′ ⊂ Q.
This is simplified to Q′ ≺ Q in the case n = 1.

Let μ be a Radon measure on Rd. Given ε > 0, we call a cube Q ∈ Qi+1 porous provided
that

por(μ, x, 2−ki+l, ε) � α

for some x ∈ Q. For all Q ∈ Qi, set

Qpor =
⋃

{Q′ ≺ Q : Q′ is porous}.

Finally, for x ∈ Rd let Qi
x ∈ Qi be the unique cube containing x. If c > 0, then cQ is the

cube obtained from a cube Q by magnifying by the factor c with respect to the centre of Q.
One of the fundamental and most useful structural properties of porous sets is the following:

if the porosity of A ⊂ Rd is close to 1
2 , then locally inside each ball with radius r the set A is

contained in a small neighbourhood of some (d − 1)-dimensional surface with Hd−1-measure
comparable to rd−1. For more precise statements of this type, see, for example, [11] or [7]. In
the following lemma, which is a slight improvement of [5, Lemma 2.2], we translate this fact
into the language of mean porous measures. It states that every cube Q may be divided into
three parts Q = E ∪ P ∪ J , where E has small measure, P is a small neighbourhood of some
(d − 1)-dimensional surface and J contains no porous points.

Lemma 3.5. Let μ be a Radon measure on Rd, i ∈ N and ε > 0. Then any cube Q ∈ Qi

may be divided into three parts as follows:

Q = E ∪ P ∪ J,

where μ(E) � Nεμ((1 + 2l+1)Q), J ∩ Qpor = ∅ and P can be covered by at most c2k(d−1) cubes
Q′ ≺ Q. Here N = N(α, d) and c = c(d) are positive and finite constants.

Proof. For any Q′ ≺ Q with Q′ ⊂ Qpor, there is x ∈ Q′ such that

por(μ, x, 2−ki+l, ε) � α.

Hence, given 0 < α′ < α with (1 − 2α′)2l <
√

d2−k, we find a ball BQ′ of radius α′2−ki+l such
that

BQ′ ⊂ B(x, 2−ki+l) ⊂ (1 + 2l+1)Q and μ(BQ′) � εμ((1 + 2l+1)Q). (3.2)

Denoting by dist(a,A) the distance from a point a ∈ Rd to a set A ⊂ Rd, define

E =
⋃

Q′≺Q,
Q′⊂Qpor

BQ′ ∩ Q,

P = {x ∈ Q : dist
(
x, ∂(Q \ E)

)
< 2−k(i+1)+l},

J = Q \ (E ∪ P ).

It is evident from (3.2) that

μ(E) � 2kdεμ((1 + 2l+1)Q) = N(α, d)εμ((1 + 2l+1)Q).
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On the other hand, since α′ > 7/16, we have that α′2−ki+l >
√

drQ, and so it follows easily
from Lemma 3.4 that P may be covered by at most (1 + 2l+1)dc′2k(d−1) = c(d)2k(d−1) cubes
Q′ ≺ Q, where c′ = c′(d) is the constant of Lemma 3.4.

It remains to show that J ∩ Qpor = ∅, that is, we have

Qpor ⊂ E ∪ P. (3.3)

Consider y ∈ Qpor \ E and choose Q′ ≺ Q with y ∈ Q′ ⊂ Qpor. Let x ∈ Q′ and let BQ′ be as
in (3.2). By the choice of α′ we have

dist(y,BQ′) � |y − x| + (1 − 2α′)2−ki+l < 2
√

d2−k(i+1) � 2−k(i+1)+l,

which gives dist(y, ∂(Q \ E)) < 2−k(i+1)+l, and therefore y ∈ P . This completes the proof of
(3.3).

The next lemma is in the core of the proof of Theorem 3.1. It shows that summing over porous
subcubes of a cube Q gives a small factor that is decreasing exponentially under iteration. This
is needed when proving that the assumptions of Lemma 3.2 are valid.

For the purpose of formulating our key lemma, we define weights β(Q) for cubes Q ∈ Qi as
follows. Suppose that μ is a Radon measure on Rd and 0 < D < d. Set

C = C(d) = max{c, 2d2l}, (3.4)

where c = c(d) is as in Lemma 3.5. If Q ∈ Qi for some i ∈ N, then define

β(Q) =
1
3

{
C−1/22−(k/2)(d−1−D) if Q is porous,
2−(k/2)(d−D) otherwise.

(3.5)

For all n ∈ N with n � 2, let ε0 = ε0(d, α,D, n) > 0 be the unique real number satisfying

R(ε0) =
5
18

C−1/22k/2, (3.6)

where, for all ε > 0, we have

R(ε) = R(ε, n)

=
n − 1

3
(εN)1/2C−1/22k/22k(n−1)(d−D/2) max

{
1,

1
3
C−1/22−(k/2)(d−1−D)

}n−1 (3.7)

and N = N(α, d) is as in Lemma 3.5.
Before formulating our lemma we make one more remark: from now on, we assume that

15/32 < α < 1/2 is so close to 1
2 that

k = k(α) � log C

log 2
. (3.8)

Thus C−1/22−(k/2)(d−1−D) � 2−(k/2)(d−D), giving

β(Q) � 1
3C−1/22−(k/2)(d−1−D) (3.9)

for all Q. This fact will be used repeatedly in the proof of Lemma 3.6.
For any Q ∈ Qi and j = 0, 1, 2, . . . , i, we denote by Qj the unique cube in Qj for which

Q ⊂ Qj . Clearly, Qi ⊂ Qi−1 ⊂ . . . ⊂ Q1 ⊂ Q0 and Qi = Q.

Lemma 3.6. Let μ be a Radon measure on Rd, 0 < D < d, and n ∈ N with n � 2. Then
for all i ∈ N and Q ∈ Qi we have

∑
Q′≺nQ

⎛
⎝ n∏

j=1

β(Q′
i+j)

⎞
⎠ r

D/2
Q′ μ(Q′)1/2 � C−1/22k/2r

D/2
Q μ(Q)1/2. (3.10)
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Moreover, if Q is any finite collection of disjoint 2kn-adic cubes and μ is a Radon measure on
Rd such that spt μ ⊂ [0, 1]d, then

∑
Q∈Q

⎛
⎝NQ−1∏

j=0

C1/22−k/2

(j+1)n∏
i=jn+1

β(Qi)

⎞
⎠ r

D/2
Q μ(Q)1/2 � r

D/2

[0,1]d
μ(Rd)1/2, (3.11)

where NQ ∈ N such that rQ = 2−knNQ .

Proof. The proof is based on Lemma 3.5. The problematic part in Lemma 3.5 is the factor
μ((1 + 2l+1)Q′). If Q′ is close to the boundary of Q, then the expanded cube (1 + 2l+1)Q′ will
not be a subset of Q and therefore we are unable to estimate the sum in terms of μ-measure
of Q. This problem is overcome by dividing the subcubes of Q into two parts depending on
their distance to the boundary of Q. This leads to the use of n: the larger n we take, the better
estimates we have. For n = 1, we cannot utilize porosity at all.

Claim (3.11) is a direct consequence of repeated applications of (3.10). In what follows,
we will prove (3.10) by induction. Divide the cube Q ∈ Qi into two regions of subcubes, the
boundary region QB ⊂ Qi+1 and the interior one QI ⊂ Qi+1, as follows:

QB = {Q′ ≺ Q : dist(Q′, ∂Q) � 2−(i+1)k+l}

and

QI = {Q′ ≺ Q : dist(Q′, ∂Q) > 2−(i+1)k+l}.

For n = 2, we estimate the sum in these subcubes in the following manner. Let R(ε) = R(ε, 2)
and let ε0 be as in (3.6) and (3.7). We take Q′′ ∈ QI. Defining Q′′

por in terms of ε0, we obtain
from definition (3.5) and Lemma 3.3 that∑

Q′≺Q′′

Q′∩Q′′
por=∅

β(Q′)rD/2
Q′ μ(Q′)1/2 � 1

3
2−(k/2)(d−D)2kd/22−(k/2)(i+2)Dμ(Q′′)1/2

=
1
3
2−(k/2)(i+1)Dμ(Q′′)1/2. (3.12)

To estimate the sum over Q′ ⊂ Q′′
por, we apply Lemma 3.5 to Q′′. Note that the part J is

now absent, and therefore the sum is divided into two parts determined by E and P . Using
Lemma 3.3 in both parts and the fact that (1 + 2l+1)Q′′ ⊂ Q, recalling (3.4), we have∑

Q′≺Q′′

Q′⊂Q′′
por

β(Q′)rD/2
Q′ μ(Q′)1/2

�
∑

Q′≺Q′′

Q′⊂Q′′
por, Q′∩E �=∅

β(Q′)rD/2
Q′ μ(Q′)1/2 +

∑
Q′≺Q′′

Q′⊂Q′′
por, Q′∩P �=∅

β(Q′)rD/2
Q′ μ(Q′)1/2

� 1
3
C−1/22−(k/2)(d−1−D)

(
2kd/22−(k/2)(i+2)D

(
Nε0μ((1 + 2l+1)Q′′)

)1/2

+
(
c2k(d−1)

)1/22−(k/2)(i+2)Dμ(Q′′)1/2
)

� 1
3
C−1/22−(k/2)(d−1−D)

(
2k/2(d−D)2−(k/2)(i+1)D(Nε0μ(Q))1/2

+ C1/22k/2(d−1−D)2−(k/2)(i+1)Dμ(Q′′)1/2
)

� 1
3
(ε0N)1/2C−1/22k/22−(k/2)(i+1)Dμ(Q)1/2 +

1
3
2−(k/2)(i+1)Dμ(Q′′)1/2. (3.13)
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Combining (3.12) with (3.13), we continue using Lemma 3.3 and (3.9) as follows:∑
Q′′∈QI

∑
Q′≺Q′′

β(Q′′)β(Q′)rD/2
Q′ μ(Q′)1/2

� 1
3
C−1/22−(k/2)(d−1−D)

×
∑

Q′′∈QI

⎛
⎜⎜⎜⎝

∑
Q′≺Q′′

Q′∩Q′′
por=∅

β(Q′)rD/2
Q′ μ(Q′)1/2 +

∑
Q′≺Q′′

Q′⊂Q′′
por

β(Q′)rD/2
Q′ μ(Q′)1/2

⎞
⎟⎟⎟⎠

� 1
3
C−1/22−(k/2)(d−1−D)

×
∑

Q′′∈QI

(
1
3
(ε0N)1/2C−1/22k/22−(k/2)(i+1)Dμ(Q)1/2 +

2
3
2−(k/2)(i+1)Dμ(Q′′)1/2

)

� R(ε0)r
D/2
Q μ(Q)1/2 +

2
9
C−1/22−(k/2)(d−1−D)

∑
Q′′∈QI

2−(k/2)(i+1)Dμ(Q′′)1/2

� R(ε0)r
D/2
Q μ(Q)1/2 +

2
9
C−1/22−(k/2)(d−1−D)2kd/22−(k/2)(i+1)Dμ(Q)1/2

�
(

R(ε0) +
2
9
C−1/22k/2

)
r

D/2
Q μ(Q)1/2

=
1
2
C−1/22k/2r

D/2
Q μ(Q)1/2.

Recalling that C � 2d2l, it is evident that #QB � C2k(d−1). From (3.9) and Lemma 3.3 we
obtain ∑

Q′′∈QB

∑
Q′≺Q′′

β(Q′)β(Q′′)rD/2
Q′ μ(Q′)1/2

� 1
9
C−12−k(d−1−D)

(
C22k(d−1/2)

)1/22−(k/2)(i+2)Dμ(Q)1/2

=
1
9
C−1/22k/2r

D/2
Q μ(Q)1/2.

Putting together the above estimates proves (3.10) when n = 2.
Next we assume that (3.10) holds when n = m and verify it in the case n = m + 1. Again,

we divide Q into two regions of subcubes QB,QI ⊂ Qi+1 defined above. Lemma 3.5 is used to
evaluate the sum in the interior region QI, whereas the induction hypothesis is applied in the
boundary region QB. Let R(ε) = R(ε,m + 1) and let ε0 be as in (3.6) and (3.7).

In QI we begin with

∑
Q′′′∈QI

∑
Q′≺mQ′′′

⎛
⎝m+1∏

j=1

β(Q′
i+j)

⎞
⎠ r

D/2
Q′ μ(Q′)1/2

=
∑

Q′′′∈QI

∑
Q′′≺m−1Q′′′

m∏
j=1

β(Q′′
i+j)

∑
Q′≺Q′′

β(Q′)rD/2
Q′ μ(Q′)1/2.

From (3.12) and (3.13), for the inner sum, we get∑
Q′≺Q′′

β(Q′)rD/2
Q′ μ(Q′)1/2

� 1
3
(ε0N)1/2C−1/22k/22−kmD/2r

D/2
Q μ(Q)1/2 +

2
3
r

D/2
Q′′ μ(Q′′)1/2.
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Repeating this m times and using (3.7), (3.9) and Lemma 3.3 yields

∑
Q′′′∈QI

∑
Q′≺mQ′′′

⎛
⎝m+1∏

j=1

β(Q′
i+j)

⎞
⎠ r

D/2
Q′ μ(Q′)1/2

� R(ε0)r
D/2
Q μ(Q)1/2 +

(
2
3

)m ∑
Q′′′∈QI

β(Q′′′)rD/2
Q′′′ μ(Q′′′)1/2

� R(ε0)r
D/2
Q μ(Q)1/2 +

1
3

(
2
3

)m

C−1/22−(k/2)(d−1−D)2kd/22−(k/2)(i+1)Dμ(Q)1/2

�
(

R(ε0) +
1
3

(
2
3

)m

C−1/22k/2

)
r

D/2
Q μ(Q)1/2

� 1
2
C−1/22k/2r

D/2
Q μ(Q)1/2. (3.14)

Note that R(ε0, i) < R(ε0,m + 1) for all i = 2, . . . , m by (3.7).
Finally, the induction hypothesis, Lemma 3.3 and (3.9) combine to give the following in the

boundary region QB (recall (3.4)):

∑
Q′′∈QB

∑
Q′≺mQ′′

⎛
⎝m+1∏

j=1

β(Q′
i+j)

⎞
⎠ r

D/2
Q′ μ(Q′)1/2

� C−1/22k/2
∑

Q′′∈QB

β(Q′′)rD/2
Q′′ μ(Q′′)1/2

� 1
3
C−12k/22−(k/2)(d−1−D)

(
C2k(d−1)

)1/22−(k/2)(i+1)Dμ(Q)1/2

=
1
3
C−1/22k/2r

D/2
Q μ(Q)1/2. (3.15)

The claim follows by summing up (3.14) and (3.15).

In the previous lemma p played no role. Our next result quantifies the fact that we really
gain something if a large proportion of scales is porous.

Lemma 3.7. Let 0 < p < 1 and

D > d − p +
log(9C)
k log 2

.

Suppose that μ is a Radon measure on Rd. Then there are n ∈ N and K > 1 such that

L−1∏
j=0

C1/22−k/2

(j+1)n∏
i=jn+1

β(Qi
x) � KL

for all L ∈ N and x ∈ Rd with

#{0 � j � nL − 1 : por(μ, x, 2−kj+l, ε) � α} � pnL

for some ε > 0. Here n and K are independent of x and L.

Proof. Let

D0 = d − p +
log(9C)
k log 2

and δ =
(

1
D0

− 1
D

)
(d − p) > 0.



Page 10 of 17 D. BELIAEV ET AL.

Choose n ∈ N such that

2kδDn > C−12k. (3.16)

Obviously, Qj
x is porous whenever por(μ, x, 2−k(j−1)+l, ε) � α, and thus

#{1 � j � nL : Qj
x is porous} � pnL.

By (3.5) we have

L−1∏
j=0

C1/22−k/2

(j+1)n∏
i=jn+1

β(Qi
x)

=
(
C1/22−k/2

)L
Ln∏
i=1

β(Qi
x)

�
(
C1/22−k/2

)L
(

1
3

)Ln (
C−1/22−(k/2)(d−1−D)

)pLn(
2−(k/2)(d−D)

)(1−p)Ln

=
((

C1/D2−k/D
)L(

3−2/DC−p/D2−k((d−p)/D−1)
)Ln

)D/2

�
((

C1/D2−k/D
)L2kδLn

(
(9C)−1/D02−k((d−p)/D0−1)

)Ln
)D/2

=
(
C2−k2kδDn

)L/2
,

which gives the claim by (3.16).

Remark 3.8. Mean porosity is defined in terms of scales 2−i where i ∈ N. However, in the
proof of Theorem 3.1 we need to use scales of the form 2−ki+m, where k,m ∈ N. This problem
may be overcome by the following observation. Let ε > 0 and x ∈ Rn such that #{1 � j �
Nk : por(μ, x, 2−j , ε) � α} � pNk. Then there is an integer t with 0 � t � k − 1 such that

#{1 � j � N : por(μ, x, 2−kj+t, ε) � α} � pN.

Observe that the starting scale plays no role in Lemmas 3.6 and 3.7 and we choose it (out of
k possibilities) depending on the point.

Proof of Theorem 3.1. Suppose that μ is mean (α, p)-porous for 15/32 < α < 1/2 for which
(3.8) holds and for 0 � p � 1. It is clearly enough to prove the claim for such α. We shall prove
that

dimp μ � d − p +
log(9C)
k log 2

, (3.17)

where C = C(d) and k = k(α) are as in Lemma 3.6. This implies the claim since, by (3.1), we
have

log(9C)
k log 2

� C ′(d)
log(1/(1 − 2α))

.

We may assume without loss of generality that μ(Rd) = 1 and sptμ ⊂ [0, 1]d.
Let 0 < p′ < p, let D > d − p′ + (log(9C)/k log 2) and let K and n be as in Lemma 3.7. We

take ε0 as in (3.6) with R(ε) = R(ε, n). Since μ is mean (α, p)-porous, there are a Borel set
B ⊂ Rd and constants η > 0, 0 < ε < ε0 and I0 ∈ N such that μ(B) > η and

#{1 � j � I : por(μ, x, 2−j , ε) � α} > p′I
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for all I � I0 and for all x ∈ B. Let N0 be so large that

KN0 >
4k

η
and N0kn � I0. (3.18)

Let Q be any finite collection of 2kn-adic cubes with rQ = 2−NQkn � 2−N0kn for all Q ∈ Q.
For those Q ∈ Q for which Q ∩ B �= ∅, we define τ(Q) = D/2. By Remark 3.8, there are t =
t(Q) ∈ {0, . . . , k − 1} and x ∈ Q such that

#{1 � j � NQn : por(μ, x, 2−kj+t+l, ε) � α} � p′NQn

provided that Q ∩ B �= ∅. (Note that l is added here because it appears in the assumptions of
Lemma 3.7 via the way we defined porous cubes in the discussion after (3.1).) For each such
Q ∈ Q, we fix Q′ with Q ⊂ Q′ and rQ′ = 2−NQkn+t. In this way we obtain k collections Qm

of 2kn-adic cubes scaled by the factor 2m, with m = 0, . . . , k − 1. Since NQ � N0, we have by
Lemma 3.7 and (3.18)

r
τ(Q)
Q μ(Q)1−τ(Q)/D <

η

4k

NQ−1∏
j=0

C1/22−k/2

(j+1)n∏
i=jn+1

β(Qi) r
D/2
Q μ(Q)1/2

for each Q ∈ Qm, where β(Qi) is as in (3.5). Summing over all the Q and using (3.11), we get
for all m = 0, . . . , k − 1

∑
Q∈Qm

Q∩B �=∅

r
τ(Q)
Q μ(Q)1−τ(Q)/D <

η

4k

∑
Q∈Qm

Q∩B �=∅

NQ−1∏
j=0

C1/22−k/2

(j+1)n∏
i=jn+1

β(Qi) r
D/2
Q μ(Q)1/2

� η

4k
r

D/2

[0,1]d
μ(Rd)1/2 =

η

4k
. (3.19)

Since r
D/2
Q μ(Q)1/2 � r

D/2
Q′ μ(Q′)1/2, inequality (3.19) implies that

∑
Q∈Q

Q∩B �=∅

r
τ(Q)
Q μ(Q)1−τ(Q)/D �

k−1∑
m=0

∑
Q∈Qm

Q∩B �=∅

r
τ(Q)
Q μ(Q)1−τ(Q)/D � k

η

4k
=

η

4
. (3.20)

Suppose that Q ∈ Q with Q ∩ B = ∅ and choose τ(Q) > 0 so small that r
τ(Q)
Q μ(Q)1−τ(Q)/D �

(1 − η/2)/(1 − η)μ(Q). This choice is possible since rτ
Qμ(Q)1−τ/D → μ(Q) as τ ↓ 0. Now we

have ∑
Q∈Q

Q∩B=∅

r
τ(Q)
Q μ(Q)1−τ(Q)/D � 1 − (η/2)

1 − η
μ(Rd \ B) < 1 − η

2
.

(3.21)

Combining (3.20) and (3.21) gives∑
Q∈Q

r
τ(Q)
Q μ(Q)1−τ(Q)/D < 1 − η

4
< μ(Rd).

Since the same upper bound is valid also for infinite collections of cubes, Lemma 3.2 implies
that dimp μ � D. Letting D ↓ d − p + (log(9C)/k log 2) completes the proof of (3.17).

The following example shows that we cannot get a better upper estimate on the dimension
than

d − p + p
C

log(1/(1 − 2α))
,

even for mean porous sets. For simplicity, we consider the case d = 1. We use the notation
dimH for Hausdorff dimension. The idea of the example is the following. First we take mnl
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steps in the construction of a standard Cantor set where each interval is substituted by two
subintervals of length 2−nk. This will give us (mnl − 1)nk scales where porosity is at least
1
2 − 2−kn. Next we divide each construction interval into 2(nk−mn)nkl subintervals and choose
every other of them. This guarantees that the dimension will be large enough but the cost of
it is the term −nk in the number of porous scales. To get rid of this, we iterate this procedure
increasing l at every step.

Example 3.9. We fix p = m
k ∈ ]0, 1[ ∩ Q. Define for all n ∈ N a Cantor-type mean porous

set

Ap,n =
∞⋂

j=1

⋃
gi∈Si

i=1,...,j

(g1 ◦ . . . ◦ gj)([0, 1]),

with

Sl = {Kj1 ◦ . . . ◦ Kjmnl
◦ fi : i ∈ {0, . . . , 2(nk−mn)nkl−1 − 1}, jt ∈ {1, 2} ∀ t},

where

fi : R −→ R : x �−→ 2−(nk−mn)nklx + i2−(nk−mn)nkl+1,

K1 : R −→ R : x �−→ 2−nkx,

K2 : R −→ R : x �−→ 2−nkx + 1 − 2−nk.

A standard calculation shows that

dimH Ap,n = 1 − m

k
+

m

nk2
.

On scales 2−s, where

s − l2 + l

2
(nk)2 ∈ {0, . . . , (mnl − 1)nk − 1} for some l ∈ N,

the porosity at each point x ∈ Ap,n is at least 1
2 − 2−kn. Hence, Ap,n is mean ( 1

2 − 2−kn, p)-
porous. Finally, we note that

1 − p + p
(1/2) log 2

log(1/(1 − 2α))
= 1 − m

k
+

m

2k(kn − 1)
� dimH Ap,n.

4. Mean porous measures are not necessarily approximable by mean porous sets

The aim of this section is to clarify relations between mean porosities of sets and those of
measures by verifying that, contrary to [1, Proposition 1], mean porous measures cannot be
approximated by mean porous sets. For simplicity, we restrict our consideration to R. Our goal
is to construct a mean porous measure μ on [0, 1] with the property that any mean porous set
has zero μ-measure.

Intuitively, the measure μ is constructed in the following way. For all positive integers i, we
define slowly decaying weights w(i) and start with the uniform measure on the unit interval.
On the ith step of the construction, we redistribute the measure on the dyadic intervals of
length 2−i by attaching weight w(i) to one half of the dyadic interval of length 2−(i−1) and
1 − w(i) to the other half. We alternate the half of the interval which gets most of the measure.
To be precise, for all 0 < p � 1, define

βp(μ) = sup{α � 0 :μ(A) > 0 for some mean (α, p)-porous set A ⊂ R}



PACKING DIMENSION OF MEAN POROUS MEASURES Page 13 of 17

and proceed by modifying the construction of [3, Example 4] as follows. For positive integers
i, we set w(i) = 1/log(i + 2) and

s(i) =

{
w(i) if i is odd,

1 − w(i) if i is even.

For all binary sequences j1 . . . ji, we denote by Ij1...ji
the closed dyadic interval of length

2−i whose left endpoint in binary representation is 0, j1j2 . . . ji. Let μ be the unique Radon
probability measure on [0, 1] determined by the formula

μ(Ij1...ji
) =

i∏
k=1

(1 − s(k))jks(k)1−jk

for all binary sequences j1 . . . ji. We change continuously the side of the larger weight since we
want to avoid the technical difficulties caused by the fact that at some scales the small ball
giving the porosity might be outside the dyadic interval containing the point we are considering.

Theorem 4.1. The measure μ has the following properties:

(1) βp(μ) = 0 for all 0 < p � 1;
(2) μ is 1

8 -porous;
(3) μ is mean (α, 1)-porous for all 0 � α < 1

2 .

Remark 4.2. For (1) we need to take slowly decreasing weights w(i), while for (2) and (3)
we only need that w(i) → 0 as i → ∞. Note that in (2) the value of porosity is not optimal.
Our aim is only to demonstrate that even porous measures need not be approximable by mean
porous sets.

Theorem 4.1 will be proved as a consequence of several lemmas. The first one, Lemma 4.3,
is a corollary of the strong law of large numbers. For x ∈ [0, 1], let xi denote the ith digit of x
in the binary representation. The non-uniqueness of the representation plays no role here since
μ is easily seen to be non-atomic.

Lemma 4.3. For μ-almost all x ∈ [0, 1], we have

lim
i→∞

#{1 � j � i : xj = xj+1}
i

= 0.

Proof. Applying the strong law of large numbers (see [4, Chapter X.7]) to the sequence of
mutually independent random variables Xi = xi if i is odd, and Xi = 1 − xi if i is even, gives

lim
i→∞

#{1 � j � i : xj = q(j)}
i

= 1

for μ-almost all x ∈ [0, 1]. Here q(j) = j mod 2. From this the claim follows easily.

For all positive integers j, we use the notation Dj for the half-open dyadic subintervals of
[0, 1] having length 2−j . (We do not use the notation Qj introduced in Section 3 since we want
to distinguish between powers of 2 and 2k.) Letting m be a positive integer and E ⊂ [0, 1],
we say that D ∈ Dj contains an m-hole of E if there is D′ ∈ Dj+m such that D′ ⊂ D and
D′ ∩ E = ∅.
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Lemma 4.4. Suppose that E ⊂ [0, 1] is mean (α, p)-porous for some α > 0 and 0 < p � 1.
Let m be a positive integer such that 2−m < α

4 . For x ∈ [0, 1], let Dj
x ∈ Dj be such that {x} =⋂∞

j=1 Dj
x. Then for μ-almost all x ∈ E, we have

lim inf
i→∞

#{1 � j � i : Dj
x contains an m-hole of E}

i
>

p

8
.

Proof. Observe that for all x ∈ E there exists N1 such that

#{1 � j � i : por(E, x, 2−j) � α} >
pi

2
for all i > N1. Lemma 4.3 implies that for μ-almost every x ∈ [0, 1] we may choose a positive
integer N2 with N2 > 16/p such that

#{1 � j � i : xj = xj+1} <
pi

4
for all i > N2. Hence, for μ-almost every x ∈ E we have

#{3 � j � i : por(E, x, 2−j) � α and xj−1 �= xj} >
pi

8
(4.1)

for all i > max{N1, N2}.
Consider x ∈ E for which (4.1) holds and a positive integer j � 3 such that xj−1 �= xj and E

is α-porous for scale j at x. An easy calculation yields that ]x − 2−j , x + 2−j [ ⊂ Dj−2
x . Since,

by the choice of m, there is D ∈ Dj+m−2 such that D ∩ E = ∅ and D ⊂ ]x − 2−j , x + 2−j [, it
follows that Dj−2

x contains an m-hole of E. Now (4.1) gives the claim.

For the remaining two lemmas we need the following notation. Let l and m be positive
integers and E ⊂ [0, 1]. If Q ∈ D(j+1)(l+m) and Q′ ∈ Dj(l+m) such that Q ⊂ Q′, we use the
same notation Q ≺ Q′ as in Section 3 with k replaced by l + m. We say that Q′ ∈ Dj(l+m) is
porous with respect to E if Q ∩ E = ∅ for some Q ≺ Q′. For Q ∈ Di(l+m) and j = 0, . . . , i, let
Qj be the unique interval in Dj(l+m) for which Q ⊂ Qj . Obviously, these definitions depend
on the indices l and m, but in what follows this dependence does not cause any confusion and
it is therefore omitted for the sake of simplicity. We refer by Q to 2l+m-adic intervals and by
D to dyadic intervals. In particular, for D ∈ Di there exists unique intervals Dj ∈ Dj for all
j = 0, . . . , i.

Our next lemma is a consequence of the previous one.

Lemma 4.5. Suppose that A ⊂ [0, 1] is mean (α, p)-porous for some α > 0, 0 < p � 1 and
μ(A) > 0. Let m be a positive integer with 2−m < α

4 . Then there are p′ > 0, positive integers
l and N0, and E ⊂ A with μ(E) > 0 such that for all positive integers i � N0 and for all
Q ∈ Di(l+m) we have

#{0 � j � i − 1 : Qj is porous with respect to E} � p′i.

Proof. Lemma 4.4 implies the existence of E ⊂ A with μ(E) > 0 and that of a positive
integer N such that for all positive integers i � N and for all D ∈ Di with D ∩ E �= ∅, we have

#{1 � j � i : Dj contains an m-hole of E} >
pi

8
. (4.2)

It follows that (4.2) is valid for all D ∈ Di when i > N/(1 − p
8 ). To see this, let D ∈ Di. Denote

by j0 the largest j with E ∩ Dj �= ∅. If j0 � N , then the claim clearly holds by (4.2). On the
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other hand, assuming that j0 < N , we obtain

{1 � j � i : Dj contains an m-hole of E} � i − j0 � i − N >
pi

8
by the choice of i.

Choose a positive integer l > N/(1 − p
8 ) so large that m < p/16(m + l). Dividing the

sequence 1, 2, . . . , i(m + l) into successive blocks of length m + l, it follows that for all positive
integers i and for all D ∈ Di(m+l) we have

#{1 � j � i : Dk contains an m-hole of E for some

(j − 1)(m + l) � k � j(m + l) − m} >
pi

16
.

Indeed, if this is not the case, then we have

#{1 � k � i(m + l) : Dk contains an m-hole of E} � pi

16
l + im � pi

8
(m + l),

giving a contradiction to (4.2). However if Dk contains an m-hole of E for some (j − 1)(m + l) �
k � j(m + l) − m, then D(j−1)(m+l) is porous with respect to E, and we obtain

#{0 � j � i − 1 : Qj is porous with respect to E} >
pi

16
for all Q ∈ Di(m+l).

Remark 4.6. The use of l and m prevents us from counting same holes twice.

Next we introduce for each interval Q a weight η(Q) which is equal to 1 if Q is not porous
and 1 minus the portion of the measure of the hole if Q is porous. For this purpose, let l and
m be positive integers and let E ⊂ [0, 1]. Define

η(Q) =

{
1 if Q is not porous with respect to E,

1 − w(i(l + m) + 1) × . . . × w((i + 1)(l + m)) otherwise

for all non-negative integers i and Q ∈ Di(m+l).
In formula (4.3) of Lemma 4.7 we prove that the product of weights of all predecessors of

Q converges uniformly to 0 as the size of Q decreases. The reason for this is quite simple: on
a positive percentage of scales there are porous intervals Q with η(Q) < 1 and the product
converges to 0 since the measure of the holes decreases very slowly. On the other hand, the
proof of formula (4.4) is based on the definition of η. It guarantees that we may utilize porous
scales.

Lemma 4.7. Suppose that A ⊂ [0, 1] is mean (α, p)-porous for some α > 0, 0 < p � 1 and
μ(A) > 0. Let p′ > 0, let E ⊂ A and let positive integers m, l and N0 be as in Lemma 4.5.
Then for all positive integers i � N0 and for all Q ∈ Di(m+l) we have

i∏
j=0

η(Qj) � c(i), (4.3)

where c(i) is a constant depending only on i, l, m and p′, and c(i) → 0 as i → ∞. (The
dependence on all other parameters but i is irrelevant for our purposes.) Moreover, we have∑

Q∈Di(m+l)

Q∩E �=∅

μ(Q)∏i−1
j=0 η(Qj)

� μ([0, 1]) = 1 (4.4)

for all positive integers i.
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Proof. By decreasing p′, we may assume that 1
p′ is an integer such that 1

p′ > N0. (Note that
in Lemma 4.5 the integer N0 is independent of p′.) Consider i > 1

p′ . Letting k be a positive
integer with k/p′ < i � (k + 1)/p′ and applying Lemma 4.5 successively for the indices 1

p′ , 2
p′ ,

. . . , k
p′ , gives

i∏
j=0

η(Qj) �
k∏

q=1

(
1 − w

((
q

p′
− 1

)
(l + m) + 1

)
× . . . × w

(
q

p′
(l + m)

))

= exp

(
k∑

q=1

log
(

1 − w

((
q

p′
− 1

)
(l + m) + 1

)
× . . . × w

(
q

p′
(l + m)

)))

< exp

(
−

k∑
q=1

w

((
q

p′
− 1

)
(l + m) + 1

)
× . . . × w

(
q

p′
(l + m)

))

< exp

(
−

k∑
q=1

(
log

(
q

p′
(l + m) + 2

))−(l+m)
)

−−−−→
k→∞

0,

implying (4.3).
Inequality (4.4) is valid since∑

Q∈Di(m+l)

Q∩E �=∅

μ(Q)∏i−1
j=0 η(Qj)

=
∑

Q′∈D(i−1)(m+l)

Q′∩E �=∅

1∏i−1
j=0 η(Q′

j)

∑
Q≺Q′

Q∩E �=∅

μ(Q)

�
∑

Q′∈D(i−1)(m+l)

Q′∩E �=∅

η(Q′)μ(Q′)

η(Q′)
∏i−2

j=0 η(Q′
j)

=
∑

Q′∈D(i−1)(m+l)

Q′∩E �=∅

μ(Q′)∏i−2
j=0 η(Q′

j)
.

Here the inequality follows by dividing the inner summation into the two possible cases: either
Q ∩ E �= ∅ for all Q ≺ Q′ or Q ∩ E = ∅ for some Q ≺ Q′.

Now we are ready to prove the main theorem of this section.

Proof of Theorem 4.1. Assume contrary to the claim 1 that there is α > 0 and a mean
(α, p)-porous set A ⊂ [0, 1] with μ(A) > 0. Using Lemmas 4.5 and 4.7, we find positive integers
m and l and E ⊂ A with μ(E) > 0 satisfying the estimates (4.3) and (4.4). Taking N0 as in
Lemma 4.7, for all i � N0, we get

μ(E)
c(i)

�
∑

Q∈D(i+1)(m+l)

Q∩E �=∅

μ(Q)∏i
j=0 η(Qj)

� 1,

giving μ(E) � c(i) → 0 as i → ∞, contrary to μ(E) > 0. This proves (1).
An elementary calculation proves (2); for details see [3, Example 4]. Clearly, 1

8 is not the
best possible value, but this is irrelevant for our purposes.

For the remaining part (3), given 0 < α < 1
2 , we fix a positive integer n such that 2−n <

1
2 − α. As in Lemma 4.3, we obtain

lim
i→∞

#{1 � j � i : xk = xk+1 for some j � k < j + n}
i

= 0
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for μ-almost all x ∈ [0, 1]. Thus, for 0 < p < 1, we find for μ-almost all x ∈ [0, 1] a positive
integer N such that

{1 � j � i : xk = xk+1 for some j � k < j + n} < (1 − p)i

for all i > N . This implies that μ is mean (α, p)-porous at μ-almost all points x ∈ [0, 1] (for
details, see [3, Example 4]), and consequently (3) holds.

Acknowledgements. E.J. also thanks the hospitality of the University of Geneva. Finally,
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3. J.-P. Eckmann, E. Järvenpää and M. Järvenpää, ‘Porosities and dimensions of measures’, Nonlinearity

13 (2000) 1–18.
4. W. Feller, An introduction to probability theory and its applications (Wiley, New York, 1950).
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