
NOTES ON RUELLE’S THEOREM

STANISLAV SMIRNOV

Abstract. This is an excerpt from the minicourse given in Stockholm in 1998. Following Ruelle’s
ideas, we give a self-contained proof of his theorem. By no means results or proofs are new, though
some places are streamlined and some errors are corrected.

Let F be a rational map on the Riemann sphere, of degree d ≥ 2. We write Fn for the n-th
iterate of F . Distances and derivatives are measured in the spherical metric. The Julia set of F is
denoted by JF . We assume that F is hyperbolic. We refer to [6, 29] for definitions and basic facts
of complex dynamics.

Theorem A. For a hyperbolic rational map F , the Hausdorff dimension of the Julia set is real
analytic in F .

For a hyperbolic rational map F , one can introduce the pressure function PF (t) which turns out
to be real analytic in t ∈ R and F ∈ Hyp. It has only one root, which is the Hausdorff dimension
HDim(JF ). Thus application of the implicit function theorem reduces Theorem A to the following

Theorem B. For a hyperbolic rational map F , the pressure function PF (t) is real analytic in t ∈ R

and F ∈ Hyp. It is concave, strictly decreasing, and its only root is HDim(JF ) (Bowen’s formula).

We will derive the real analyticity of pressure by showing that it is equal to the logarithm of the
spectral radius of an appropriate Ruelle transfer operator. In “good” functional spaces this spectral
radius turns out to be a simple isolated eigenvalue; then one checks that Ruelle operator depends
real-analytically on t and F and by perturbation theory derives the real-analyticity of pressure.

1. Ruelle transfer operator

In this Section, we consider Ruelle(-Perron-Frobenius) transfer operator with general smooth
weight.

Let L = Lg denote the Ruelle transfer operator with weight g which acts in appropriate function
spaces according to the formula

Lgf(z) =
∑

y∈F−1(z)

g(y) f(y) . (1)

The formal adjoint operator L∗ = L∗
g acts in the space of measures by

d
(

L∗
gµ(z)

)

= g(z)dµ(F (z)) . (2)
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It is easy to see that powers of these operators satisfy

Ln
gf(z) =

∑

y∈F−n(z)

gn(y) f(y) ,

d
((

L∗
g

)n
µ(z)

)

= gn(z)dµ(Fn(z)) ,

where gn(z) :=
∏n−1

j=0 g(F
jz).

The hyperbolic dynamic is expanding, and looking at the definition one can see, that Ruelle oper-
ator makes “smooth” functions even “smoother.” This makes the Ruelle operator “quasicompact”
in various “smooth” spaces, which can be made rigorous in several ways:

• In very “smooth” spaces the operator is compact; e.g. this is easy to show when the
weight is holomorphic: then transfer operator is a sum of compositions of multiplication
operator (which is bounded), and “stretching” (which is compact by Cauchy formula).
In our setting there seems to be no Banach space where the transfer operator would be
compact; nevertheless similar to above arguments show that it is nuclear in the nuclear
space C∞. This is the original approach of Ruelle introduced in [35]. Unfortunately,
though short and elegant, it requires invoking not so well-known and highly non-trivial
(but beautiful) papers [13, 14] of Grothendieck on nuclear operators and their Fredholm
determinants.

• We will follow another standard approach. In Hölder space the operator is quasicompact,
i.e. it behaves like compact outside the essential spectral radius. The standard method
of proof given by two-norm inequality of Ionescu-Tulcea and Marinescu from [19]. It will
work in any space of “smooth” functions, the “smoother” is the space, the smaller will be
essential radius. Among “smooth” spaces tried by different authors in various situations
are Sobolev, BV , Zygmund, . . . .

Space BV is especially good for one dimensional real dynamics, since composing with
an isomorphism does not change the variation of a function, calculations thus are much
simplified and can be done for very general dynamics. Unfortunately, there is only “partial”
analog BV2 of this space for complex situation, see [39].

If dynamics lacks expansion, one can still prove quasicompactness, provided additional
conditions like “pressure is strictly bigger than topological pressure” are satisfied. Such
conditions ensure that to “obtain” spectral radius of the transfer operator at least exponen-
tially many inverse branches are needed, then one can use principle that out of exponentially
many inverse branches most will be expanding.

• Another approach which works in the same situations, uses Banach space cones, and was
developed by Liverani in [20].

We will consider transfer operator on the spaces C(J) and Hα(J), the latter with the norm

‖f‖α := sup
|f(x) − f(y)|

|x− y|α
+ ‖f‖∞ .

Proposition 1. Assume that g is positive and Hölder-continuous with exponent α. Then operator
Lg is bounded on the spaces Hα and C, and its spectral radii satisfy

ress(Lg,Hα) < r(Lg,Hα) = r(Lg, C) =: λg ≡ λ .

Moreover, λ is a simple eigenvalue of Lg on Hα and the only eigenvalue with modulus λ.
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1.1. Two-norm inequality.

Lemma 1.1. Operator Lg is bounded in the spaces C and Hα, moreover, the following two-norm
inequality holds:

‖Lnf‖α ≤ Cqn ‖Ln‖∞ · ‖f‖α +Mn‖f‖∞ . (3)

Proof: It is trivial that Lg is bounded on the space C. To establish boundness and quasicom-
pactness of Lg on the space Hα we write

1

|z − z′|α
∣

∣

(

Ln
gf

)

(z) −
(

Ln
gf

)

z′)
∣

∣

≤
1

|z − z′|α
∑

y∈F−nz

∣

∣gn(y)f(y)− gn(y′)f(y′)
∣

∣

≤ sup
y∈F−nz

∣

∣

∣

∣

y − y′

z − z′

∣

∣

∣

∣

α




∑

y∈F−nz

|gn(y) − gn(y′)|

|y − y′|α
|f(y′)| +

∑

y∈F−nz

gn(y)
|f(y) − f(y′)|

|y − y′|α





≤ Cqn



(degF )n ‖gn‖α ‖f‖∞ +
∑

y∈F−nz

gn(y) ‖f‖α





= C qn ‖f‖α ‖Ln‖∞ + M ′
n ‖f‖∞ ,

with some positive constants C, M ′
n, and q < 1. Above we used that for a hyperbolic Julia set

preimages of two points z, z′ can be assigned in pairs y, y′ so that |y − y′| < C1q
n
1 |z − z′| with

some positive absolute (depending on J only) constants C1 and q1 < 1. This follows easily from
the fact that preimages under F−n of small balls centered on the Julia set are univalent and shrink
exponentially as n→ ∞.

Thus the two-borm inequlaity (3) holds and it immedeately follows that Lg is bounded in Hα.

Since λ := r(L, C) = limn→∞ ‖Ln‖1/n
∞ , by the two-norm inequality (3), we can find an integer m

such that

‖Lm f‖α ≤
1

2
λm‖f‖α +Mm‖f‖∞ . (4)

Denote Cn := supi+j<n{λ
i
∥

∥Lj
∥

∥

∞
}, clearly limn→∞ (Cn)1/n = λ. By induction we have

‖Lkm f‖α ≤
1

2
λkm‖f‖α + 2MmCkm‖f‖∞, (k = 1, 2, . . .) ,

therefore

r(L,Hα) = lim
n→∞

‖Ln‖1/n
α ≤ lim

n→∞
(λn + Cn)1/n = λ = r(L, C) .

Inverse inequality follows from easy

‖Ln‖∞ = ‖Ln1‖∞ ≤ ‖Ln1‖α ≤ ‖Ln‖α ,

and we deduce that r(L,Hα) = r(L, C). 2
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1.2. Finite rank approximation.

Lemma 1.2. There is a constant C such that for any ε > 0 there exists a finite rank operator K
in Hα with

‖K‖α ≤ C,

‖f −Kf‖∞ ≤ ε ‖f‖1,p. (5)

Proof: By the Whitney extension theorem there is a bounded in Hα by some constant C linear
operator, extending f to the whole plane. Consider a grid of equilateral triangles ∆ of size < ε/(2C).
Define Kf to be a continuous function coinciding with f in the vertices and linear on each triangle.
Clearly, ‖Kf‖α,J ≤ ‖f‖α,C ≤ C‖f‖α,J . Moreover, on any triangle ∆ one has

‖f −Kf‖L∞(∆) ≤
ε

2
· ‖f −Kf‖Hα(∆) ≤ ε‖f‖α .

2

1.3. Quasicompactness. This method of establishing quasicompactness using two-norm inequal-
ity and finite rank approximation is due to Ionescu-Tulcea and Marinescu, [19] (compare also [30]).

Lemma 1.3. Transfer operator Lg is quasicompact in the space Hα, that is its essential spectral
radius is strictly smaller than its spectral radius.

We remind that spectral radius of L in the space X is

r(L,X) := lim
n→∞

‖Ln‖
1

n

X ,

and the essential spectral radius is

ress(L,X) := inf {r(L−K,X) : K compact operator in X}.

The latter is the spectral radius of L in the Calkin algebra (= bounded operators modulo compact
operators). The spectrum of L in X lying outside of the disk {|z| ≤ ress} consists of a finite number
of eigenvalues that all have finite geometric multiplicity.
Proof: Chose n so large that in the two-norm inequality

Cqn ‖Ln‖∞ <
1

4
r(L, C)n ,

with n fixed take operator K from the Lemma 1.2 with such ε that Mnε <
1
4r(L, C)n. Then we

have

‖Ln(f −Kf)‖α ≤ Cqn ‖Ln‖∞ · ‖f −Kf‖α +Mn‖f −Kf‖∞

≤ C′qn ‖Ln‖∞ · ‖f‖α +Mnε‖f‖α

<
1

2
r(L, C)n‖f‖α .

Since LnK is a finite rank operator, we deduce that

ress(L,Hα) ≤ ‖Ln(I −K)‖1/n
α < r(L, C) .

2
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1.4. Existence of eigenmeasures.

Lemma 1.4. There exists a probability measure νg supported on the whole Julia set such that

L∗
g νg = λg νg.

Proof: Clearly, operator L∗ is bounded on M(J), and maps positive measures to positive mea-
sures. Thus we can consider the following operator on the (convex and weak-∗ compact) space of
probability measures Prob(J):

P : µ 7→
L∗µ

VarL∗µ
.

By the fixed point theorem, P fixes some measure ν, which is the eigenmeasure of L∗: L∗ν = λ′ν.
To show that the eigenvalue λ′ is equal to λ, we write

λn � ‖Ln‖∞ � (Ln1, ν) = (1, (L∗)nν) = (λ′)n ,

where � means up to a multiplicative eo(n).
It is clear from (2) that F−1spt ν ⊂ spt ν, and since preimages of any point are dense in JF we

deduce that spt ν = JF . 2

1.5. Multiplicity of λ.

Lemma 1.5. λ ≡ λg is a simple eigenvalue of the operator Lt in Hα, and the only eigenvalue with
modulus λ:

dim ker (Lg − λg)
2 = 1 .

Proof: Consider some eigenvalue λ′, |λ′| = λ with a non-zero eigenfunction p, such should exist
since ress(L,Hα) < r(L,Hα) = λ. Then we can write

|λ′|(|p|, ν) = (|Lp|, ν) ≤ (L|p|, ν) = (|p|, L∗ν) = λ(|p|, ν) .

The integral (|p|, ν) is positive, the first and the last terms above are equal, and using that spt ν = J
we can write |Lp| ≡ L|p| ≡ λ|p|.

By the definition of L the latter implies that for any z values of p at all preimages of z have the
same argument (i.e. there is no cancelation, which would lead to |Lp| < L|p|). Since preimages are
dense in the Julia set, we conclude, that p has constant argument and without loss of generality is
positive.

It immediately follows that λ′ = λ and that dim ker (Lg − λg) = 1 (otherwise a difference of
two distinct eigenfunctions would have non-constant argument)

Suppose now that

(Lg − λ)2h = 0

for some h ∈ Hα. We need to show that p := (Lg − λ)h is trivial. Since there is a positive
eigenfunction and dim ker (Lt −λ) = 1, non-trivial p can be assumed to be strictly positive. Then
we have

0 < (p, ν) = (Lgh, ν) − (λh, ν) = (h, L∗
gν) − λ (h, ν) = 0 ,

leading to contradiction, which proves the Lemma. 2
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Remark 1. One really needs to check that geometric multiplicity of λ is one, and not just that
eigenfunction is unique, as is shown by the following example of a Jordan cell. Operator

Qt :=

(

o 1
x2 0

)

,

acting on R
2 depends real analytically on t. But σ (Qt) = {±t} and therefore r (Qt) = |t| is not a

real analytic function.

1.6. Alternative approaches. There are alternative ways to do lemmas 1.4 and 1.5 which work
in more general situation than methods discussed above, and we outline them.
Alternative construction of eigenfunctions: The following argument, showing that there is
a positive eigenfunction with eigenvalue λ (before existence of an eigenmeasure is known) is taken
from [39].

Since ress(Lg,Hα) < r(Lg,Hα)λ, there should be eigenvalues λj satisfying |λj| = λ, but there are
only finitely many of them and the corresponding spectral projections have finite ranks. Denote

gj := Pj 1; g0 := 1 −
∑

gj.

Applying Ln
g , we have

Ln
g g0 +

∑

Ln
g gj = Ln

g 1,

and since
‖Ln

g g0‖∞ . ‖Ln
g g0‖α = o(‖Ln

g 1‖∞) as n→ ∞,

at least one of gj’s is not zero.
We also have

‖Ln
g gj‖α � nkj λn as n→ ∞,

where kj ≥ 0 is the maximal integer number such that

ϕj := (L− λj)
kj gj 6= 0,

(i.e. kj is the size of the corresponding Jordan cell). Let k := max{kj}. Then

pn := n−k (Ln
g 1) =

∑

j: kj=k

λn
j ϕj + o(λn) (6)

in Hα and also in C(Ω̄). Since the functions ϕj are linearly independent, we have

‖pn‖∞ � ‖pn‖α � λn,

and we also have pn(z0) � λn for some fixed z0 ∈ ∂Ω. Since pn ≥ 0, it follows that
∥

∥

∥

∥

∥

1

N

N
∑

n=1

pn

λn

∥

∥

∥

∥

∥

∞

&
1

N

N
∑

n=1

pn(z0)

λn
� 1 .

By (6), this is possible only if one of the eigenvalues λj is positive. 2

Alternative construction of eigenmeasures: What follows below is a version of construction
of conformal measures due to Patterson [32] and Sullivan [42].

Fix a point z and consider the sequence of positive measures

µn := λ−n (L∗
g)

n δz = λ−n
∑

y∈F−n(z)

gn(y) δy .
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Clearly, L∗
gµn = λ µn+1, and by the proof above we have

‖µn‖ = λ−n Ln
g1(z) � nk

for some integer k ≥ 0. Next we define

νn :=
n

∑

j=0

µn ,

and take some (weak-∗) limit point ν of the sequence νn / ‖νn‖. Then ν is a probability measure
supported on JF , and since

‖L∗
gνn − λνn‖

‖νn‖
=

‖λ(µn+1 − µ0)‖

‖νn‖
�

nk

nk+1
=

1

n
→ 0,

we have L∗
gν = λν. 2

2. Analyticity of pressure

Now we turn to the proof of Theorem B.
Consider the transfer operator L(t,F ) with (positive Hölder) weight g(t,F ) = |F ′|−t. It has the

main eigenvalue λ(t, F ), and we define pressure by PF (t) := logλ(t, F ) .
For a general weight g the pressure is usually defined by P (log g) := logλg, so our particular

case PF (t) corresponds to P (−t log |F ′|) in standard notation.
It follows from the definition of transfer operator and Koebe distortion theorem that for a fixed

point z

PF (t) =
1

n
‖Ln‖∞ + o

(

1

n

)

=
1

n
log





∑

y∈F−nz

∣

∣(Fn)′(y)
∣

∣

−t



 + o

(

1

n

)

, n→ ∞ .

And since |(Fn)′| > CQn with Q > 1, it easily follows that PF (t) is strictly decreasing and convex
in t, therefore continuous. Exponential decay of correlation, discussed below, implies that the error
term o(1/n) actually decays like τn with τ < 1.

2.1. Bowen’s formula. Sketch:
Pressure is strictly decreasing, P (0) > 0, P (2) ≤ 0, thus there is unique δ such that P (δ) = 0

and hence λδ = 1. Thus the measure νδ has Jacobian |F ′|δ (like δ-dimensional Haudorff measure
would), it is called δ-conformal measure.

Alternatively one can arrive at it via Patterson-Sullivan construction.
Pulling back a fixed cover by small balls and applying Koebe distortion one shows that for

every balll B of radius R, centered on the Julia set, νg(B) � Rδ. Then with Besikovitch covering
theorem we deduce that δ-dimensional Hausdorff measure of J is positive and finite, hence Hausdorff
dimension of J is δ.

2.2. Perturbation theory. Fix hyperbolic rational function F̃ and number t̃. Then for hyperbolic
rational function F ≈ F̃ by Mañé-Sad-Sullivan [28] there is a quasiconformal conjugation HF :

JF̃ → JF between dynamical systems (JF , F ) and (JF̃ , F̃ ), which depends holomorphically on F .

Consider the transfer operator L̃ = L̃(t,F ) corresponding to the (fixed!) dynamics F̃ and weight

|F ′(HF )|−t.



8 STANISLAV SMIRNOV

First note that conjugation HF transforms operator L̃(t,F ) into operator L(t,F ) (corresponding to

dynamics F and weight |F ′|−t), preserving the space of continuous functions; therefore they have

the same main eigenvalue. Thus PF (t) is the logarithm of the main eigenvalue λ(t, F ) of L̃(t,F ).

Take α > 0 such that weight |F ′(HF )|−t ∈ Hα for all t and F ’s in some neighborhoods of t̃

and F̃ . The dynamics for operator L̃(t,F ) is fixed (i.e. independent of F and t). Direct checking
shows that the weight changes with real analytically (as a function in Hα) with t and F . From the
definition of the transfer operator, the map (t, F ) 7→ L(t,F ) is real analytic as a map to the Banach
space of bounded operators on Hα. Then standard perturbation theory implies that PF (t) is real
analytic in F and t.

In fact, chose a single closed curve γ separating λ(t̃, F̃) from the rest of the spectrum of L̃(t̃,F̃ ).

If t, F are sufficiently close to t̃, F̃ , the point λ(t, F ) lies inside γ and the operators
(

L̃(t,F ) − z
)

are invertible for all z ∈ γ. Consider the spectral projection

Π(t,F ) =
1

2πi

∫

γ

(

L̃(t,F ) − z
)−1

∂z.

Then (t, F ) 7→ Π(t,F ) is a real analytic map and hence rank Π(t,F ) ≡ rankΠ(t̃,F̃ ) = 1. It follows that

Π(t,F ) is a projection onto the eigenspace of L̃(t,F ) corresponding to λ(t, F ), and

λ(t, F ) =
L̃(t,F )Π(t,F )f

Π(t,F )f
, (f 6≡ 0, P(t̃,F̃ )f = f),

is an analytic function.

3. Bonuses

(i) Perron-Frobenius Theorem: exponential decay of correlations.

The probability eigenmeasure ν ≡ νg in Lemma 1.4 is unique, and if fg ∈ Hα denotes the non-
negative eigenfunction of Lg satisfying

νg(fg) = 1,

then the rank one operator
P := (·, νg)fg

is the spectral projection of Lg : Hα → Hα corresponding to the isolated eigenvalue λ ≡ λg. We
have shown that λ is the only eigenvalue with modulus λ (or bigger) and it is simple, hence

r((I − P)Lg,Hα) < λ, (7)

which implies that
λ−nLn

g → P ,

with exponential rate of convergence in the uniform operator topology. The latter can be rewritten
as exponential decay of correlations with respect to (invariant) measure dµg := fgdνg:

∣

∣

∣

∣

∫

φdµg

∫

ψdµg −

∫

φ(Fn)ψdµg

∣

∣

∣

∣

≤ Cτn

for some τ < 1.

(ii) Equilibrium states.
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Let µg denote the probability measure fgνg . It is immediate that µg is an ergodic, F -invariant
measure. We claim that µg is a unique equilibrium state, i.e. it is a unique invariant measure µ,
for which the free energy

h(µ) − χg(µ) ,

attains its maximum, and the latter appears to be equal to the pressure P (log g) := log λg. Here
we write h(µ) for the entropy of µ and χg(µ) :=

∫

log g dµ. Partcularly,

P (log g) = h(µg) − χg(µg) =: hg − χg . (8)

The equality (8) follows from the Rokhlin-type formula

hg =

∫

logJg dµg, (9)

where

Jg :=
dµg ◦ F

dµg
≡ λg

fg ◦ F

fg
|F ′|t ∈ L1(µg)

is the Jacobian of µg. The formula (9) follows from the well-known estimate

hg ≥

∫

logJg dµg

and from the variational principle.

To prove the uniqueness result, it is sufficient to show that if µ is an equilibrium state, then

µ(Ψ) = µg(Ψ) for all Ψ ∈ C∞.

For the latter see [34].

(iii) Derivatives of the pressure function.

One can establish formulas for the derivatives of P (t) (see [36, 37, 38]). Denote χ(µ) :=
∫

log |F ′|dµ,
so that χ|F ′|−t ≡ −tχ(µt).

Then for the first derivative we have

P ′(t) = −χ(µt) ,

and also

P ′(+∞) = − inf
invariant µ

χ(µ) = lim
n→∞

1

n
inf
J

log |(Fn)′| ,

P ′(−∞) = − sup
invariant µ

χ(µ) = lim
n→∞

1

n
sup

J
log |(Fn)′| .

These statements follow easily from the variational principle applied to particular case g = |F ′|−t.
(iii) Ruelle expansion for the Hausdorff dimension of Jz2+ε.
(iv) Zdunik’s theorem for hyperbolic polynomials.
(v) Multifractal formalism for measure of maximal entropy.
(vi) Generalizations to non-hyperbolic polynomials.
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[19] Ionescu-Tulcea, C. T., Marinescu, G.: Théorie ergodique pour des classes d’opérations non complètement con-
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