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DECOMPOSITION OF SOLENOIDAL VECTOR CHARGES
INTO ELEMENTARY SOLENOIDS
AND THE STRUCTURE OF NORMAL ONE-DIMENSIONAL CURRENTS

S. K. SMIRNOV

ABSTRACT. We investigate the structure of vector charges whose divergency is a mea-
sure (i.e., the structure of normal one-dimensional flows). We prove that every vector
charge with divergency 0 can be decomposed into elementary solenoids, i.e., the sim-
plest charges of this kind (representable as an “averaged circulation” along a sufficiently
good embedding of R into R”). The techniques used are those of the geomeiric
measure theory, but the knowledge of this theory is not necessary to understand the
statements and proofs.

§1. INTRODUCTION

1.1. Introductory notes. Let 7 be an R"-valued countably additive set function
defined on the Borel o-algebra %, of R”:

T(E)= (T\(E), ..., T,(E)), Eec%,,

T; being real measures on B, (scalar charges). We call T a vector charge. We
endow the set of all vector charges with the norm

var(T) := sup 3 |T(E)],
j
where the supremum is taken over all Borel subdivisions of R”. Then we may
identify this set with the space of currents of finite mass ([1], 4.1.7). The last term
refers to linear functionals 7 defined on the normed space Z!(R") of all C>-
vector fields ¢ = (¢;, ..., ¢,) with compact support; 2!(R") is endowed with the
uniform norm

n
9]l = max | > Jlg;[2.
j=1
The functional 7 corresponding to a charge T is defined by

. n
)= [ YopdT;, ped'®.
j=1

We often do not distinguish between 7 and T and consider the space Ch of all
charges as the conjugate space Z;(R") of Z1(R"). The weak topology induced in
Ch will be called the Z-topology.
Solenoidal charges (or simply solenoids) mentioned in the title of the article are
divergence free charges T :
divT =0.
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This relation is understood in the sense of distributions; namely, it means that

for every u € Cg°(R"). The set of all solenoidal charges will be denoted by the
symbol Sol.
Of particular interest is the space N;(R") of all charges enjoying the following
properties:
sptT is compact, var(divT) < +oo

(sptT denotes the closed support of 7). The latter property means that the distri-
bution div7T defined by the formula

divT(u):=-T(Vu), wueC°(R"),

is a scalar charge, and var(divT) is the total variation of this charge. Using the
terminology of [1], we call the charges of class N; normal. Clearly, N; contains the
set Sol. of all solenoids with compact support.

The problem of geometric structure of normal charges and solenoids arises in
the geometric measure theory ([2], Problem 3.8) and in the homology theory with
real coefficients [3]. The author has met this problem when studying approximation
properties of various classes of vector fields and differential forms, as well as extension
properties of fields and forms (see [4], where normal currents and solenoids arise in
a natural way as dual objects). ‘

Restricting ourselves to solenoidal charges first, we start with a heuristic discussion
of their structure.

The simplest example of a solenoidal charge is an oriented closed curve of finite
length. Roughly speaking, this is the circulation of a test field along an oriented
rectifiable curve y of finite length:

Ty(p) = /y (1(x), (X)) dZ' (x), peD,

7 being the vector field of unit tangent vectors (the orientation of y); we denote by
Z™ the m-dimensional Hausdorff measure. If a, b € R® are the endpoints of the
curve, then

@V T)(w) = ~Ty(Va) = = [ (2(x), 9(0) 42" (x) = = [ a7 (x) = u(a) - u(b),
b Y

where # is the derivative of the function u € Cg°(R") along y. If y is closed, then
the divergency of T, is 0.

Is the stock of these simplest solenoids rich enough to create all solenoids? Is it
possible to represent an arbitrary solenoid 7 € Sol as a “continuous convex combi-
nation” of loops? We mean a representation of the form

(1.1) 7= [ T,duty,
where u is a nonnegative measure. “Convexity” means that
(1.2) var(T) = /‘var(Ty) du(y)

(var(T;) is the variation of the charge T, , i.e., the length of y). The last relation
implies, in particular, that u-almost all curves y stay in spt7 . Such a decompo-
sition can be believed to exist because it does exist locally for smooth charges and,
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furthermore, vector measures with zero rotation do admit a decomposition into “hy-
persurfaces” (see the Fleming-Rishel formula below), which implies the existence
of a ?ecomposmon of an arbitrary solenoidal charge into closed curves in the case
of R-.

However, for n > 2 formulas (1.1) and (1.2) should be renounced. In the general
case the set of “elementary solenoids” must include, besides closed curves, some of
their generalizations (like an irrational winding of the torus or the Smale-Williams
solenoid, see below). Then it turns out to be possible to justify the analogs of (1.1)
and (1.2).

Before giving a rigorous formulation of the problem, we introduce the necessary
notation and terminology.

The term measure will always mean a nonnegative countably additive set function
defined on a g-algebra of subsets of a space X .

We shall need not only charges, but also local charges, i.e., countably additive R”-
valued set functions 7' defined on the ring of all bounded Borel sets in R". The
total variation of a local charge can be infinite; nevertheless, the following measure
IT|| is defined on %, (and is finite on each ball):

ITI(E) :=sup > |T(E;)|,
J

the supremum being taken over all finite Borel subdivisions of E. The set of all
local charges is denoted by Chy,(R"). Any charge T is absolutely continuous with
respect to ||7]|. Hence, by the Radon-Nikodym theorem 7 = T||T||, where T is
a Borel measurable field of unit vectors in R" defined ||T|-a.e. In other words,

(1.3) T(p) = /R (p(x), Tx)dIITI(x), ¢eZ'R".

With any (local) charge T and with any Borel E C R", we associate the restriction
TLE of T to E. Thisis the (local) charge g T , where yr denotes the characteristic
function of E:

(TLE)(G)=T(ENQG)
for every (bounded) G € %, . Clearly,

(TLE)(p) = /E (0, TydT, ¢ecD'®".

We shall also use the cartesian product 7 x.S € Chloc(R”” ) of acharge T € Chy(R")
and a scalar charge S on R’:

TxS:=(T1xS,..., T, xS, 0,...,0),
I

where T; xS is the usual product of (real) measures and the 7; are the “coordinate”
charges of T . It is easy to see that

(1.4) div(T x S)=divT x S.

The same identity holds if T is a scalar charge and S is a charge (with an obvious
definition of T x S) A local charge T is called locally normal if divT (understood
as a distribution) is a local (scalar) charge; in this case we write 7 € Nijoc. If
divT =0, then we write T € N, .1oc - The set of local charges with zero dlvergency
is denoted by Sol .
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The symbol fyu will stand for the image of a measure x under the mappmg f
(this image is defined on a suitable ¢-algebra):

HU(E) == u(f7'E).

Some of the statements presented here are easier to formulate and prove if one
makes use of the notion of the image f;7 € Chj(R") of a charge T under a
Lipschitz mapping f: R — R” (for this image to exist it suffices, e.g., that T be of
compact support or of finite variation; see [1, 4.1.7, 4.1.14] for more details).

Suppose f is a proper C*-mapping of R* into R” (“proper” means that the
limit lim|y|_,o0|f(X)| = co; an arbitrary C*-diffeomorphism of R" onto itself is
proper). Let Df be its Jacobi matrix. Then for ¢ € Z1(R")

(15)  ATiw)= [ OF T dITI= [ (T @0 dITI,

or
1T() = T(f'e),
where by f'¢ we denote the inverse image of a vector field ¢ under a C*°-smooth
mapping f:
(ffo)(x) == (DA*(xX)p(f(x))  (x €R™).
In precisely one case (namely, f: R — R”") we shall need a nonsmooth but Lipschitz

mapping f. Then ||T[|(z) is a function (whose absolute value is 1 a.e.), and instead
of (1.5) we use

(1.5) AT (9) :=/RT(1)<f'(t), (S dITI(?), ¢ €P"R").

It can easily be verified that in these cases

(1.6) (foghT = fi;T
(1.7) var(f;T) < Lip(f) var(T),
(1.8) div(f,T) = fi(div T)

(Proofs under more general assumptions can be found in [1]).
We denote by J, the Dirac measure at the point x and by .#” the Lebesgue

measure in R"”. Let [a; b] denote a charge in Ch(R) defined as follows: if a < b,
then

b
[a; bi(p) =/ (p.e)dl, ¢eP'(R),

and if b > a, then [a; b]:= —[b; d] (e1, ..., e, are the coordinate unit vectors in
R").

1.2. Statement of the problem. We return to the question of decomposition of a
charge into simplest ones. This will be understood in the following precise meaning:
a charge T € Chy(R") decomposes into charges lying in.J C Chy(R") if there is a
measure x4 on J such that

(1.9) T=LR@@)

(1.10) IT) = /J IR|| du(R).
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If, moreover, T € N, J1oc(R"), J C Ny 10¢(R"), and the following additional condition
holds

(1.11) | div T = /J | div R|| du(R),

we say that T' completely decomposes into charges lying in J .

Remark 1. All measures considered below will be Borel with respect to the Z'-topo-
logy, therefore, the integrals in (1.9), (1.10), (1.11) will be understood in the weak
sense. For example, [, Rdu(R) is a charge S defined by S(9) = [, R(p) du(R) for
every field ¢ € Z1(R").

Remark 2. If (1.9) holds, then (1.10) and (1.11) are equivalent to the following
relations (respectively):

(1.10) var(T) =/var(R)a'u(R),
J

(1.119) var(divT) = / var(div R) d u(R).
J

Remark 3. The general theory of convex sets guarantees the existence of a set J such
that any solenoid can be decomposed into elements of J . Indeed, consider the unit
ball Bg, in the space Sol. This ball is metrizable (in the Z-topology), as a bounded
set in the space Ch, conjugate to a separable space. So, the set extr Bg, of all its
extreme points is Borel and nonempty (by the Krein-Milman theorem) and one can
apply the Choquet theorem ([5]). It follows that for every T € Sol there exists a
representing measure supported on extr Bg,, . For this measure statements (1.9) and
(1.10") hold. Hence there is at least a possibility to take extrBs, for J, and the
problem of finding J reduces to that of describing extr Bsg) .

By remark 3, the elements of extrBs, are natural “elementary” solenoids. We
(partly) describe them and obtain a “concrete” decomposition formula. From the
same point of view, we also consider the structure of normal charges.

1.3. Examples and results. We start with several important examples of solenoids,
and then state the results.

Example 1. A closed curve. The simplest example of a one-dimensional solenoidal
charge is a simple oriented closed curve T of finite length var(T) mentioned above
(all integer valued charges with zero boundary are decomposable into an at most
countable sum of such curves, see [1], 4.2.18). This term is attributed to any charge
T € Ni(R") for which there exists a function f: [0; var(T)] — R” such that

(1.12) Lip(f) <1,

(1.13) T = f[0; var(T)],
(1.14) f is one-to-one on [0; var(7T)),
(1.15) S(0) = f(var(T)).

It follows from (1.13) that

var(T)
T(p) = /0 (F'@), o(f(0))dt, ¢ e D(R™).

If (1.14) (or (1.15)) does not hold, we shall omit the word ‘simple’ (resp., ‘closed’).
We recall that, if a curve is closed, then the boundary of the corresponding charge is
Zero.
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Example 2. An irrational winding on the torus. The idea of this classical example is
as follows (see, €.g., [6, pp. 92-94]). Consider the charge e;# 2. Cyl in R?, where
Cyl := [0; 1] x {x22 + x32 = 1} is the cylinder surface. Clearly, its divergency is
supported by {0; 1} x {x3 +x2 = 1}. .

To “annihilate” the divergency, we “glue” our cylinder into a torus. We glue up the
two boundary circles turning one of them by a z-irrational angle. To be a bit more
precise, we put Sq := [0, 1) x [0, 1) and take a C*-transformation f: R? —» R?
1-periodic in x; and x, and such that f|Sq is a bijection onto a torus. Consider
the charge ’

T := fﬁ(eggzl_SQ) .

where e = (cosf)e; + (sinf)e,, sin@ being irrational. It is not hard to see that
divT = 0. If we try to decompose 7T into curves by “gluing” local decompositions
(which exist near every point of the torus), then, instead of loops, we obtain infinite
curves, each one coiling round the torus and constituting its “irrational” winding.
Finally, we remark that using this example it is not hard to construct a C*°-smooth
charge in R3 not decomposable into loops.

Example 3. The Smale-Williams solenoid. This example is based on a construction
of a well-known attractor. A detailed discussion of the method of constructing charges
related to stable or nonstable manifolds of some difffomorphisms can be found in
[3] (see also [7] and a discussion of fractal structure of T, in [8]). Therefore, we
give only a brief intuitive description.

Consider a diffeomorphism f of a solid torus Tor into itself such that f(Tor)
“turns twice” inside Tor. The object Torw := (e, f*(Tor) is known in the theory
of dynamical systems as the Smale-Williams solenoid. Locally Tor,, is (topologi-
cally) the Cartesian product of a Kantor set by a segment (turning once around the
axis of the solid torus, we mix these segments up and glue them together in a different
order). We can orient these segments (i.e., prescribe a direction of rotation on Tor )
and define a dyadic measure u on the Kantor set. This gives rise to a solenoid T,

which coincides locally with u x [a; b] (up to a Lipschitz homeomorphism). Thus,
locally we can decompose 7 into curves. But mixing the segments up under “gluing”
constitutes an obstacle to a global decomposition (a result of this mixing is, e.g., the
fact that the Smale-Williams solenoid contains no loop).

Example 4. Almost periodic solenoids. Let f: R — R" be a Bohr almost periodic
vector function. We assume for simplicity that the vector function f’ is uniformly
continuous and its absolute value does not exceed 1 everywhere. We define a charge
T by the formula

T(p):= fim 5 / SS (f'@), e(f(0)dt, ¢eP'®R.

The limit exists, since the function (f’(¢), ¢(f(2))) is almost periodic and, conse-
_quently, admits averaging. For ¢ € Z'1(R") we have

T(0)] < limsup, oo [ 1(0), 9(F0)] i

. 1
-8
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whence var(7) < 1. Finally, for every u € °(R"),
= div T(w) = Tdu) = lim 5 [ (9.0, dus () dr

= lim —l—/s g—tu(f(t))dt

s—00 2§ —5
= lim - (u(/(s)) ~ u(/(=s))) = 0.

So, the above charge T is normal and of divergence 0, and var(T) < 1. It is easy
to see that all preceding examples fit into this pattern. The first one (for a curve of
length 1) corresponds to a periodic function f (with period 1); in examples 2 and 3
a suitable function f can be constructed by gluing together the local decompositions.

This suggests taking the charges of Example 4 as “basic”. It is natural to consider
not only almost periodic functions f, but all functions for which the average exists.
This leads to the following definition.

Definition. A charge T is called an elementary solenoid if there is a Lipschitz vector-
function f: R — R" enjoying the following properties:

(1.16) Lip(f) < 1,

. 1 ———
(1.17) T=9 - lim 52 Fl-k; k],
(1.18) var(T) =1,
(1.19) JR) CsptT.

Remark 4. Conditions (1.16) and (1.17) are similar to the first two conditions in the
definition of a curve; (1.17) means that for every field ¢ € & I(R") the mean

(1.20) Tp):= lim 5o [ (70, p(s @) d

exists. Condition (1.18) guarantees that after passage to the limit in (1.17) the
solenoid will not “self-cancel”, and (1.19) guarantees that when making our decom-
positions into solenoids we do not leave the support.

Now we state our main results. Denote by ¢; the set of all oriented curves of
length / with Z-topology.

Theorem A. Let [ > 0. If T € Sol, then T can be decomposed into elements of €.
To be more precise, there exists a finite Borel measure u on €; with var u = var(T)/!
such that for J = &;, relations (1.9) and (1.10) hold, and, moreover,

(1.21) 711> [ v R) duc),

T
(1.22) -y Oy @ulR) = [ G du(R)

(b(R) is the origin of the curve R, e(R) is its end: the two parts of (1.21) are
measures).
Theorem B. Every solenoid can be decomposed into elementary solenoids.

By virtue of Remark 3, Theorem B is equivalent to Theorem B’:
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Theorem B'. We have extr Bg, C elem, where elem denotes the set of all elementary
solenoids.

Theorem C. Any charge T € N{(R") can be completely decomposed into a sum of two
charges P and Q such that divP =0 (and Theorem A is applicable to P) and Q
can be completely decomposed into simple oriented curves of finite length (we prove
in fact Theorem C for charges T € N; ,loc(Rn+1) of finite variation).

Remark 5. Once more we emphasize the fact that the supports of u-almost all curves
involved in the decomposition in Theorem A lie in spt T . This is very important for
applications. The same is true for Theorems B and C.

Remark 6. Theorem A yields only a “noncomplete” decomposition (1.9)-(1.10), but
it is often more convenient for applications, because only charges of simple structure
(curves) are involved, and for big / there is a good estimate (1.22) for the variation
of the divergence.

1.4. Currents of an arbitrary dimension. Our theme can be generalized to normal
currents of an arbitrary dimension m (the question settled by theorems A-C cor-
responds to m = 1). In this more general setting the role of normal charges goes
to the space N,,(R") of m-dimensional normal currents (i.e., functionals defined on
differential forms of degree m ). The variation of a charge becomes the mass of a
current; the divergence of a charge becomes the boundary (see the details in [1]):

divT(¢) = +T(dg),

where d is the ordinary exterior differential of the form ¢. The role of “simple”
charges played (for m = 1) by curves goes to the “integral currents” (rectifiable cur-
rents with rectifiable boundary; see [1; 4.1.24, 4.1.28] for a several other equivalent
definitions are discussed. The space of all integral m-dimensional currents in R” is
denoted by I, (R"). In accordance with [1, 4.2.25], in the case that we are study-
ing here (m = 1) an arbitrary T € I;(R") can be completely decomposed into a
countable sum of simple oriented curves R;, j € N, of finite length:

R=>R;,
j=1
var(R) = Z var(R;),
j=1

var(divR) = Y _ var(div R;).
j=1

Hence the decomposability of a one-dimensional current into integral currents (see
below) is equivalent to its decomposability into curves.

Let us briefly discuss decomposition problems for an arbitrary m .

We ask whether every T € N, (R") (or T € Sol,) can be decomposed into
“simple” currents lying in a set J C L,(R") (in other words, whether we have
extr By C I,(R") or extr Bsy C Ln(R")). If the answer is negative, it is desirable to
find a description of admissible sets J .

The degenerate cases m =0 and m=n, 0T =0, are not interesting (if m =0,
then we can decompose into point unit masses; if m =n,then T =0).

If m=n—1, divT =0, then T =divS, where S is a current of dimension »
with finite mass, which allows one to reduce this case to the case m = n. Here S
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can be identified with a (scalar) locally summable function and T with its gradient;
S turns out to belong to the class BV of functions with bounded variation (see [9]).
The decomposition we are looking for is given by the Fleming-Rishel formula (see
[9, 10] and [1], 4.5.9 (13)):

+o00
Vs = Ve dt,
_+oo
VS| = / Vgl dt,

which yields a decomposition of S (and hence of T') into currents corresponding
to the characteristic functions of the Lebesgue sets E; of the function S .

If m=n-1 and divT # 0, then T can be decomposed into integral currents
provided that its boundary is rectifiable: div 7T € I,_,(R"); see [11]. But if div7T ¢
I,_»(R"), then this is impossible (in general), and, probably, no simple description
of the extreme points of the corresponding unit ball exists. A counterexample (see
the details in [12]) is based on the fact that for the current

T=dxANdzANZ>+dy Ndz A L3 {z >0} € Ny 10c(R?)

the decompositions into integral currents represented by “half-planes”, naturally aris-
ing in the half-spaces {z < 0} and {z > 0}, fail to “merge” on the border (the plane
z=0). :

If 1 <m < n-2,then no decomposition into integral currents exists in general,
even if div7T = 0. Already for m = 1, n =3 counterexamples can easily be given
for C*-currents (see Examples 2, 3). “Merging” in R* the two counterexamples of
the preceding paragraph disposed at a certain angle to each other, we can construct
a current from Nz,loc(R4) with zero boundary that cannot be decomposed even lo-
cally near the points of some 2-dimensional subspace in R*. Moreover, Zwarski
have shown that for 2 < m < n — 2 local decompositions of C>-currents invoke
some compatibility conditions (like in the Frobenius theorem emerging in these prob-
lems; see [8]); so, a C*°-current can be nondecomposable into integral currents (even
locally).

1.5. Sketch of the proof. There is a well-known correspondence between vector fields
of zero divergency (smooth solenoidal charges) and noncompressible flows (they are
also called ‘currents’, but we use the term ‘flow’ to avoid confusion). If a smooth
solenoidal charge is given, then the functions determining the elementary solenoids
it can be decomposed into, are trajectories of points moving in the corresponding
flow with velocity one.

Therefore, it is desirable to learn to “trace the trajectories” for arbitrary 7 € Sol.
If we simply smooth 7' out, then we will have problems with singular points of the
corresponding vector field (it is difficult to follow the trajectories there). To avoid
these difficulties, we extend T to a charge 7” in R"*!, so as if we want to add the
time coordinate to the corresponding flow (whose existence is not clear as yet) in order
that the (n+ 1)-th coordinate of a moving point change uniformly. After smoothing
in an appropriate way the charge obtained, we do not get singularities (the (n+ 1)-th
component of the corresponding vector field is always positive), and a decomposition
into “trajectories” presents no problem. Moreover, the angle between the vectors and
the (n + 1)-th coordinate axis will not exceed 45°, which will immediately imply
that a global decomposition of T’ into trajectories “almost parallel” to the (n + 1)-
th axis exists. After that, approximating 7’ by smoothed charges, we arrive at a
decomposition of 7 itself, and it remains to project this decomposition to R”,
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obtaining a decomposition of 7' (in fact, the matter is somewhat more complicated:
we prove Theorem A in this way, and then obtain elementary solenoids with the help
of Birkhoff-Khinchin ergodic theorem).

In case divT # 0 (Theorem C) our flow has a positive and a negative source (the
boundary of T'), and we prove Theorem C by checking (with the help of simple
estimates) that almost every point coming from the “positive source” arrives even-
tually at the “negative” one (precisely the sum of such curves will give the second
charge). This is done with the help of Theorem A, but at the beginning we add a
charge of simple structure to 7" (embedded into R™!), to ensure the triviality of
the boundary.

We conclude with some words concerning a way to formalize intuitive arguments
about flows. If T is a smooth solenoidal charge, then it does give rise to a flow
(a group of transformations of R") preserving the measure ||7]|. The generator of
this group in the complex space Ly(||T||) is a selfadjoint extension of the following
symmetric operator A :

19f
ioT’
This definition of A4 makes sense for every solenoid 7 . It is natural to try to con-
struct an appropriate unitary group and to obtain a “flow” in the general case, thus
solving our main problem. Unfortunately, in the case of an arbitrary solenoidal
charge T the operator A is only symmetric, but not selfadjoint (which would be
necessary to construct a semigroup). However, it is possible to return to the prob-
lem of existence of a group or a semigroup after we have Theorem B: then with
every solenoidal charge T, one can associate a certain Markov process with invari-
ant measure ||7|| (an analog of a flow) and the semigroup of operators related to
this process.

Af() = (Y, ) = f e Cr®).
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§2. THE PROOF OF THEOREMS A AND B

2.1. Notation. We work with two spaces, R* and R"*!. The generic notation of
points of R™*! will be capital letters (X, Y, Z, ...), whereas points of R" will be
denoted by small letters (x,y, z,...). We identify R™! with R" x R. So, the
relation X = (x, ), where x = (X1, X2, ..., X,) € R", means that

X:(Xl,...,X,H,l)? X1=x1,...,X,,=xn,X,,+1=t.

We identify a vector v € R” with (v, 0) € R""!. Accordingly, a set (a measure, a
charge) ExF in R"*t! will mean the cartesian product of sets (measures, charges) E
and F in R” and R, respectively. We denote by & and & orthogonal projections
of R™! onto R” and R (the latter is often interpreted as the “time axis”).

2.2. The class &/ . We call a local charge R in R"*! almost parallel to R if for
||R||-almost every X € R™*!

(2.1) |ZR(X)| < GR(X)

(| -] denotes the Euclidean norm in R™!). If R is a curve (see 1.3, Example 1),
then (2.1) means that the angle between the unit tangent vector R(X) and R does
not exceed 45°.
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We say that a charge R € N; 1,(R™*!) belongs to the class s/ if it is almost
parallel to R and if there is a Lipschitz vector function F: R — R"! such that

@ IFwl=1,
(22) () R=F{—oo, +o3),

(c) ulirP @F(u) = 400, ulir_n @F(u) = —oo.
Relation (b) means that for every ¢ € Z'(R"*!)

+00
(2.3) ,, R(p)= [ (F'w), o(F@)) du.
Putting N(= N(¢)) := max{||€X|: X esptp}, Ry := Fi[-N; N], we rewrite
(2.3) in the following form:

R(p) = Rn(9).
Thus, R acts locally as.a curve. Clearly, &/ C Soly,, since for every function
G € C*(R"*!) with compact support

R(VG) = / Y dﬁg’;ﬂ dt = G(F(N)) = G(F(=N)) = 0
-N

if a positive number N is sufficiently large.
If Re/ and F is the corresponding parametrization of R, then

n
Fr(u)(= @F@))) > | S (FI(u))?
j=1
n
Foy1(0) + fg’ F,,1(¢)dt is a strictly increasing function of v mapping R onto itself
(see (2.2 (c))). Taking ¢ = F,,;(u) as a new parameter, we easily prove the existence
of a Lipschitz vector function f: R — R” such that

(2.4) Lip(f) <1, R=gy—o0;+00), wherep:= (f(@, 0.

Conversely, every Lipschitz function f: R — R" with Lip(f) <1 (i.e., every f €
Lip, ) gives rise to a local charge.
Trying to project an element R € & to R", we put formally

(AR)(9) = R(P'p), ¢eP'(R). )
But this relation is senseless since Plp ¢ D!(R"'), whereas R is only a local

charge in R"*!. To avoid this difficulty, we consider “pieces” Ry of R correspond-
ing to compact segments A = [a, b] C R". Namely, we put

RA = XSAR (= RLSA) ,

a.e.on R (because R is almost parallel to R). Hence F/,, > 0 a.e., and Foi(v) =
+1

where Sy denotes the strip R” x A. If R is defined by (2.4), then R, = m[a_;?i.
Clearly, R, is a curve; PR, is also a curve:
PRy = fila; b,
We make some important observations:
(a) varRy < V2(b—a);
(2.5) (b) varFRy < (b—a);
(c) if var AR, = b - a, then R, is a curve of length (b — a).
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Indeed, var Ry = var gy[a; b], and we have (a) (see (1.7)); the same estimate gives
(b) since f € Lip,; (c) follows from our definition of a curve of given length (see
Example 1 in 1.3). O

2.3. Slow motions in R"™'. Let Lip{ denote the class of all Lipschitz vector
functions f: R — R” with Lip(f) < C. We take some f € Lip] and consider the
vector-function

p:t— (f(1), 0).
We call it a slow motion in R"*! and write ¢ € Slow(R"*!). The term “slow” refers
to the fact that the speed |¢(¢)| does not exceed an absolute constant (= v/2 ), while
its direction does not change essentially since the vectors ¢(¢) remain almost parallel
to R. Every ¢ € Slow(R"!) gives rise to an element R, of & :

—_—t
R, := py(—00; +00).
The mapping ¢ — R, (¢ € Slow(R"*1)) is a parametrization of . , because (2.4)
implies that it is surjective. Now our aim is to endow Slow (R"*!) by the structure
of a compact metric space.
2.3.1. Let R stand for the one-point compactification of R :
\ R" = R™ U co.
Topologically, the space R" is " c R™!, Transferring the natural metric of S™

to R , we obtain a metric d on ]ﬁm; with this metric R is a compact metric
space.

We also need the set C,, of all continuous functions ffR— R” such that either
S(®R) CR™ or f(R)={oo}. We set
Ai(f, &) =max{d(f(t), g(t)):t€[-j, jl},

o0
Af,8) =2 27Ai(f, 8)/(1+4;(f.8), [.8€Cnm
j=0
The convergence corresponding to the distance A is the uniform convergence on
every compact subset of R. Let Lip’c‘,m := Lipt U{foo} (here f, denotes the
constant function f,, =o00), and let C, := C, \ {f}-

2.3.2. Lip¢ ,, is a compact subset of Cpn. Indeed, if f, € Lipg ., f € Con,
fx Cm, f and f # fw, then f is a continuous R™-valued vector function and

S (1) R, f(t) for every t € R, hence f € Lip¢; so, Lipé,m is closed in Ch, .
Now we take an arbitrary sequence (f;) lying in Lip7: ; we shall show that there is
a subsequence (f;,) converging in C,. We can assume that f; # f for all k.

If (f%) is uniformly bounded on every compact interval (i.e., sup{|fi(?)|: [t| < J,
k=1,2,...} <+oo0, j=1,2,...), then we apply the Arzela—Ascoli theorem to

each segment [—j, j], j=1,2,..., and the standard diagonal process yields the

desired sequence (k;). If (fy) is unbounded on a segment [—j;*, j*], then there is
a sequence of integers (k;) and a sequence (¢;), || < j*, such that fi(¢) > /. This
implies that for j > j* and ¢ € [—j, j] we have

|fi, (O] 2 | fo @0)] = 1 fie, (8) = Sio (21)] > 1 = 2C;.
Therefore, A;(fy, » foo) ! 0, whence A(fy, , foo) - 0.
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2.3.3. We define “the improper slow motion” Poo 1IN R' xR by -
Poo(t) = (00, ).
Let S :=Slow(R™") U {pos}, P(9) :=P(p) if p € Slow(R™), P(pos) = fo . If
a metric A in S is defined by
. w)=NPp,Fy), g weS,

then the mapping P becomes an isometry of S onto Lipf,,,. Hence, by 2.3.2, S
Is a compact metric space.

2.4. The continuity of the mapping ¢ — R,. Here we endow ./ with the 9-
topology and show that the above mapping is continuous.

2.4.1. Putting & = U {0}, we make o a topological space taking the -
topology from Chy,.. The space & is metrizable. Indeed, let a countable set I" C
Z'(R"™") be uniformly dense in 2! (R"*!). We can assume, moreover, that for any
triple (N, ¢, ), where N > 0 is an integer, ¢ € 1(R"), spty C Si-n, N =
R" x [-N, N], and ¢ > 0, there is y € ' with support in S;_y, n; such that

maxgn1 |@ — 7| < &. We fix some T € . Every neighborhood of T, contains its
neighborhood of the form

v(To, 4, 8):={T €/ :max|(T - To)(p)| <z},
9

where 4 ¢ Y (R""!) is finite, ¢ > 0. We choose a large integer N = N4 such
that Uycqspto C Si_n, n). For every ¢ € 4 we can pick some y, € I satisfying
the following conditions: spt Y¢ C Si—~,n and max|p — y,| < ¢/8NV2. Let I
(=T7(4, €) ) be the set of all functions Yo, ® € A. Then

Yy = V(To, F’, 8/2) C V(To, A, 8).

To prove this inclusion, we take 7 € v, and put R := T — Ty; clearly, for every
peA ,

|R(@)| < |R(7p)| + |R(9) — R(7y)|
<é&/2 + (var Ti_n,m+ var(Tp)—n, nj) max |¢ — Yol

<&/2+4V2N -max|p —y,| <&

(we use (2.5 (a))). Hence, the Z-topology on & coincides with the I'-topology (the
latter can be defined by the metric

AT, To)i= 3 27y RO
where I' = {y;, 72, ...}).
2.4.2. Now we consider a mapping B: S — & defined by
B(p) := Ry(p € Slow(R™")), B(px) =0

(see 2.3.3), and prove its continuity. The spaces S and &/ being metric, it suffices
to prove the sequential continuity. We take ® € Q(R"*!), ¢ ¢ Slow(R"*!) | and
a sequence (¢;) of slow motions tending to ¢ (in Slow(R""'), i.e., in Cpyy). To
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prove that R, (®) — R,(¢), for an arbitrary sequence Ji < Jj2<... weshall find a
sequence k; < ky <... such that

R¢]([)(¢) - R¢(¢) H
where J(I) = ji, . Let f; = P(g;), then ¢;(t) = (fj(1), 1) . Clearly, ¢(2) = (f(1), 1),
where f, < f. We denote N, = max{|@X|: X € spt(p)} and choose (k;) in

such a way that f;;) converges weakly in L?([-N, , Ny]) to a vector-function 4.
This is possible, since |f’| < 1 a.e. Passing to the limit in the identity

fro® = fro @+ [ frp@dt, v el-Ny, Ny),

we see that f(v) = f(0) + fov A(t)dt, v € [-N,, N,], whence A = f’ a.e. Thus,

NV’ N¢
Ro,,(9) = (P i@, o(frp@, O)dt+ [ eni(fr)(t), D)dt.
—N, N,

Now let ¢; — ¢ in S and ¢ € Z1(R"*!). Then
d(Z(pj(1)), ) == 0

uniformly on [N, , N,]. Hence sptp NsptR, = @ for large values of j, and
B(9;)(¢) = 0. But this means that B(¢;) — B(po) =0.

2.4.3. Beillg the image of a compact space S -under a continuous mapping B,
the space & is compact. (in the Z-topology). In what follows, we shall also need
restrictions of slow motions to compact time intervals A = [a, b]. For R € &/ we
put rA(R) = R.S,, where §é =R xA; we alsg\ put 7A(ps) == 0. ItL is easy to see
that r, is continuous on . . Consequently, & := rA(Ja?) is @ -compact. The set
), :=rA() consists of curves. If R € &, , then spt(R) C Sp, @b(R) = a, Ze(R) =
b v

Now we turn to the proof of Theorems A and B.

2.5. The first step: extending 7' to a local charge on R"*'. Let T € Sol(R") be the
given nondegenerate solenoid in R"*!.
We define a local charge T’ on R"*! (“the extension of T ”) by

T :=TxZ"'+||T| x e41-L"
= (T+ew)(IT| x L) = (1 x 2, ..., T, x L', TxZ).

In other words,

+00

() o= [ 1erar+ [ ar[ o, na1), peni@,

—O00

where ¢’(x) := ¢(x, t). Since the unit vectors T and e,,; are orthogonal (||T| x
Z1)-a.e., we obtain

IT=V2ITI| x 2",  T'=—=(T+en1).

Sl

Also, we need the following properties of 7" :
1) T" € Sol; 10c(R™);
2) T' is almost parallel to R;
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3)if A:=[a,b], Sp:=R"xA, T, :=T' Sy, then
divTy = ||T|| x (6, — &),  varT=Iv2varT;
4) AT, =(b-a)T.

Proof. Property 1) follows from ( * ), where we put ¢ = Vu, u beinga C*-function
on R**! with compact support (one can also use (1.3), (1.4)).

Property 2) is obvious (since PT' = T/V2, @T = e,,1/V2). To prove 3), we
note that

div T} = divT x L' +||T| x divia; b] = | T|| x (5 — 6a):
var(Ty) = | T'||(a) = (V2|IT|| x £1)(F)
= V2||T|(R"Z[a, b] = V2var(T)(b — a) = IvV2var(T).
To prove 4), we recall that
(P'o) X1y oo X, Xpi)) =0(X1, ..., Xn), 9 €D(RY,

hence for every charge R in R™*!
(AR ) =RH) = [ (RO, ..., Ko, ), 01, .., X)) dIRIX),

For R =T, we get

ATV = [ (T, 0 @X)dIT | < Z(X)

R”x[a;b]

b
=/a /R (T, p(PX))d|T|(X)dt = IT(p). O

2.6. The second step: a regularization of 7’. The charge 7" and the scalar measure
IT|| will be regularized separately. We choose an everywhere positive function ® €
Cs°(R") satisfying [fo, ®(x)d-Z"(x) = 1. If we put

®,(x) 1= &~ D (%) ,

then a standard argument shows that for every vector charge 7 of finite variation
we have '

var(T x ®,) < var(T);
T«®=02", whereoisa C®-smooth vector field,
T*CDE—@—»T as e — 0.
We denote
“T”s =T+ @ = 1. L",
T,:=Tx®, =1,%",

where 2, is an everywhere positive C>°-function (because ||T’|| # 0 and ®, is every-
where positive), and 7, is a C°°-smooth vector field on R”. Finally, we introduce
a charge T/ on R"™"! by setting
T, =T, x L'+ ||T|, x ens1-Z"
= ((T)ex 2, .o, (Tn)e x LTI, x L) = (14, t.) L.
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Precisely this charge will be regarded as a regularization of 77.
We shall use the following properties of T} :
1) Ta( € SOlloc;
2) T! =1, where 1, is a C™-smooth vector field on R,
3) for every X € R"*!

T:(X) #0, | P1e(X)| < @1.(X).

Property 3) means that 7. is almost parallel to the (n + 1)-th axis. Next, putting
T, 5= T;.5 we have

4) T, o € Ny 10c(R*), var(T] ,) < IV2var(T), var(div T, ,) < 2var(T);

5) TB’,A—Q—»TA as ¢ — 0.
Proof. Clearly, div T, = div(T * ®;) = (div T) * ®, = 0; now the proof of 1) can be
completed as the proof of property 1) of 7’. To prove 2), one can simply put 7, :=

(14, t;). Then 7,(X) # 0 since #,(X) > 0. Moreover, || Pt = ||t;|| < t: = @e,
and we have 3). The first part of 4) is obvious. To prove the second, we notice that,

by 3),
Izell = VTl + .2 < V2t

var T , = | T!|(Sa) = /|r|a’£/”+1<\/_ () A2 (X)

Sa

whence

=IV2 [ t(x)dZ"(x)=IV2var|T|, <IV2varT.
]Rn

To finish the proof of 4) it remains to note that
div Ty 5 = IT1l, x (Ja — B).

To prove 5), we observe that
T,y =T, x (L' A) + T, x [a; b],
T, =T x (L' A) +||T| x [a; bl.
But T, <2, T and | T || 2, T\, whence T; , 2, Ty .

2.7. The third step: a decomposition of the smooth charge 7, into elements of &/ .
The field 1, is solenoidal and almost parallel to the (n+1)-th axis. We start analyzing
it with the following obvious remark. If a C°°-smooth vector field ¢ on R™! is
solenoidal and parallel to R (i.e., if Lo(X) = 0), then ¢ is constant on every
line z x R. Indeed, dive = %’L , hence o(X) = (0, ...,0, 0,41(X)) depends on

Xuy1 only. Therefore, the solen01dal charge ¢.Z"t! corresponding to the field o
can be decomposed into oriented lines parallel to the (n + 1)-th axis. Marking every
such line by the point at which it intersects R”, we can say that the corresponding
“decomposition measure” is g,,1-Z" .

2.7.1. Now we return to the solenoidal vector field 7., almost parallel to the (n+1)-
th axis. We are going to show that a suitable rectifying diffecomorphism G makes it
parallel to R (but still solenoidal). Applying the inverse transformation H = G™!,
we decompose 7, into (infinite) curves, namely, into the images of the lines parallel
to the (n + 1)-th axis.
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Since 7, is almost parallel to the (n + 1)-th axis (property 3) of T;), such a
global rectification does exist, i.e., there is a C™®-diffeomorphism G: R"™' — R"!
preserving the (n + 1)-th coordinate and such that the field o := DG -1, is parallel to
the (n + 1)-th axis (DG is the Jacobi matrix of G ).

Proof. We consider the following Cauchy problem:
{ Y(t)=Y°, t, R, Y°eR"!,

- . N T
Y=%(Y), 7,:= (Te)8+1'
n

(2.6)

It is equivalent to

{ ) =17

(2.7) dy;

dt(t) (Te)j(Y1,eee, Yoo t), j=1,...,n,

since (2.6) implies Y,.; = 1. From the obvious estimate

n

@i =zl <1
j=1
and the Picard theorem it follows that the Cauchy problem (2.7) has a unique C°°-
solution defined everywhere on R. Hence the same is true for the problem (2.6); its
solution will be denoted by Y,  yo.
The transformation

G:Y — (PYy,, v(0), Ypy) € R™!

is a C°°-diffeomorphism of R""! onto itself preserving the (n + 1)-th coordinate
and transforming the trajectory of every solution of (2.6) into a line parallel to R,
since for Y° € R**! we have

PG (Y, v (1)) = PY,;, v-(0), teR.
Differentiating this identity in ¢ and putting t=1t, yields
P(DG(Y°)-T,(Y°)) =0
for every Y° € R"™!' | Hence the field & := DG -7, is orthogonal to the hyperplane
. The same is true for ¢ := DG - 7,.
2.7.2. Subst1tut1ng G and T} = 183 n+l to (1.5) and changing the variable under

the integral sign, we can write

(G,T!)(9) = / (DG - 1., 9(G)) d-Z™

\ Re

=/ (DG(H) - 7,(H), p)|JH|dZ™,
R’l

where H := G~! and JH is the Jacobian of H . In other words,
GyT; = DG(H) - t,(H) - |JH|-Z "+,

The field on the right-hand side is parallel to the (n+ 1)-th axis (we have proved this
for a similar field without the factor JH ). Besides, this field is solenoidal, since, in
accordance with (1.8),

diVGﬂTb{ = Gu leTEI = Guo =0.
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Hence, by the remark at the beginning of Section 2.7, this field does not depend on
Xnyr:
DG(H)-1,(H)-JH = p(2)dXpy1, z€R,

and we get a decomposition of Gy7, into lines parallel to R:
(2.9) GiT, = [ d;x(—00; 00):p(z)dZL"(z).
Rn

2.7.3. Recalling that, by (1.6), |
HyGT, = (HG)T; = (Id)T; = T,
we apply H to the two sides of (2.9):

(2.9 T; = . h:p(z)dL"(z), p=pe;

_— . . . .
here h, := Hj (52(—00; +oo)) € & is alocal charge corresponding to the slow motion
@z,

(2.10) 9:(t):=H(z,t)=(f(z, 1), 1)

The point f(z, t) = PH(z,t) is determined by the conditions
(2.11) fz, )= (f(z, 1) (z,0)eR™, f(z,0)=2),
where t* = Pt = (;”;1; » TR ?:ﬁ) (see (2.6) and (2.7)).

2.7.4. Now we “embed” the decomposition (2.9') into the space S of slow motions
(see 2.3.3). The mapping ®: R” — Slow(R"*!)(c §) defined by

z— @, (z€eR")

is continuous, because f(z,t) — f(zo, t) uniformly in ¢ € [a, b] as z — zy (for
every segment [a, b]). Putting ®d(o0) := D, , we see that ® becomes a continuous

mapping of R” into S. This mapping is one-to-one, hence it is a homeomorphism.
The image v(= v,) of the measure p.#"+! under @ is

(2.10) V(&) = / pd ™, £ c @)
D-1(&)

Clearly, v is a Borel measure on S supported by a finite-dimensional compact subset
P~ . =n .
O(R") of S (parameterized by R via ®).
Now we can rewrite (2.9’) as

2.11) T = /A R, dv,(7),
5
where R, =: B(y) € & denotes the local charge on R™! corresponding to y € S

(see (2.4.2)).

2.7.5. The measure v depends on ¢ (v = v, ); we shall show that the variation of
v, is uniformly bounded.:

(2.12) varv, <varT foralle>0.
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For a local charge ¢ on R"*!, we put o, := o (R"” x[0, +00)) . Identifying the slow
motion ¢, with the local charge B(¢;) (see 2.4.2), we have

varv, = var®y(p,, L") = / P dL"
]Rll
=var/ 0:p:(2)dL"(z) = var/ div(g;) + pe(z) dL"(z)
R” R”
= vardiv/ (02) + pe(2)dL"(z) = vardiv(T)), <varT
Rn

(the latter inequality was proved in 2.6.2). O

2.7.6. With every a € R one can associate the shift 728 - S. Namely, if
® € Slow(R™!), ®(1) = (f(£), 1), and 7,Poo := Poo , then (ta®)(t) = (f(t +a), 1)
(t € R). We shall prove that the measure A, defined by (2.15) is shift invariant.
First of all, if f(f) = t*(f(¢)), then f(t + a) = t*(f(t + a)) (see (2.11) for the
definition of 7*). Hence the set ®(R") C Slow(R"*!) is shift invariant. We denote

8%(z) == f(z, a)
and take a Borel set & C (I>(R”) This set consists of motions ¢/, ¢/(2) = (f(¢), 1),
where f = 7*(f) (see (2.11)). I

E1=<I>_'(g)={9”¢(0)1¢€g}={f(0)2f=f*(f) 9r€&},

then v(&) = [ pd-Z". Cleatly, ® '(1,(E)) = { f(a) : f = t*(f), P} =
g%(E), and V(Ta(g)) = [pup pdZ" =1(a, E).

So, we must prove that I(a, E) does not depend on a. To do this, we look at p
(= pe ) more carefully. We have

(213)  p(z) = (DG)(H(z, 1) - (H(z, )y, - [GH)(z, 8)] (z€R", 1€ R),

where [w],41 is the (n + 1)-th coordinate of w € R"™! But since G preserves
the (n + 1)-th coordinate, the expression in the square brackets in (2.13) is equal to
[t7(H(z, t))]n+1,and ©(H(z, 0)) = 7(z) (since H(z, 0) = z). Moreover, H(z, t) =
(f(z,0),0),
A N
DH(z, 1) = (fz(f)’ 9 (1’) . JH(z,t)=detf(z, 1).

But f(z,0) = z and JH(z,0) = 1. Taking ¢ = Oin (2.13) yields p = Tp4;.
Multiplying the field 7* (which determines the group g) by 7,.1, we obtain P,

which is a solenoidal field in R”. Hence divt,,;7* =0, and the Liouville theorem
([13] or [14]) implies that the function a — I(a, E) is constant.

2.8. The final step: the weak limit of the measures »,. We have a family {v,}.>0
of Borel measures on S, which are shift invariant and uniformly bounded (see 2.7.5
and 2.7.6). Now our aim is to pass to the limit in (2.11’) as & tends to zero along a
suitable sequence.

2.8.1. We take a sequence (¢), ¢; — 0,& > 0 and denote Vj = v The weak
compactness of the unit ball in the space of real Borel measures on S allows us to
assume that

(2.14) v; - v weakly,
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where v is a Borel measure on S (since v¢({@}) = 0, this measure is supported
on Slow). The limit relation (2.14) means that

lim Aadu,:/AadV for all a € C(S).
S

Jj—oo Jg
Every v; is shift invariant; therefore,
/Aa(’ray)dllj(y)=//\adl/j, j=1,2,..., aEC(§).
s S
By (2.14),
/Aa(zay)du(y) =/Aadu, aeC@),
S S

whence v is also shift invariant. In accordance with (2.12),

(2.15) varv < liminfvarv; < varT.

Jj—o0
To pass to the limit in (2.11’), we take a vector field ¢ € Z(R") and put a(y) :=
R,(9)(= By(9)), a(p) =0. Clearly, a € C(S); by (2.14) and (2.11") we have

(2.16) T! (p) = / adv; —— [ adv.
S

j—oo  J§
But in 2.6.1 we proved that Te’,-, A Z, T, for every segment A = [a, b], whence

T}, -2+ T'. Combining this with (2.15), we conclude that

(2.17) T = /§Ry dv(y)

2.8.2. Now we finish the proof of Theorem A.
Having fixed / > 0 and a segment [a, b] = A of length /, we put T, :=
T'_SA; Sp:=R" x A. Formula (2.17) means that

(2.18) | fmmﬁémwmww

for every test field ¢ € Z1(R™!). Since T" is a local charge, (2.18) holds for every
Borel measurable bounded vector field ¢ on R™"!. Hence, we can apply (2.18) to
%a - @ (instead of ¢ € Z'(R"!)), where xa is the characteristic function of the
strip S) . We get

(2.19) n:ﬁmmwm=[&mm»

where (Ry)a:= RyLA, ya:=7|a,and RyA is the curve yla; b] in R"*!. We define
a mapping & : S — % by

EA(Y) = R,, (y €Slow(R"*)), Ea(Pos) =0

Then &x(Slow(R™1)) = & (see 2.4.3). The mapping &x is continuous and trans-

forms v into a Borel measure A4 := (é2)yv on MA , (Aa({@o}) =0, vardy = varv <
var T'). Now, (2.19) becomes

(2.20) T, = /M RdAx(R).
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Taking assertion 5) in 2.5 into account, we obtain
(2.21) IT = AT, = / FARAIA(R).
A

Let u(= pa) := I7"(F)da (ie., u is the image of /-4, under P sy — By,
where B, := {U € Ch(R") : varU < /}; we have FA C By by virtue of (b) in
(2.5)). It is clear that '

(2.22) T= / Rdu(R), [varyu = vari, = vard < varT.
By

But then

varT < / varRdu(R) < | ldu(R)=Ivaru <varT,
B B

whence fB, var Rdu(R) = fB[ ldu(R), Ivaru =varT, and
varR=1/, wv-ae. on B,.
It follows that u, is supported on ¢, (this is the set of all curves of length /, which
is a Borel set). Therefore,
T'= [ Rdu(R), varT = | varRdu(R),
< <

and we have (1.9) and (1.10) (see the statement of Theorem A). It remains to prove
(1.21) and (1.22). In accordance with a property of 7, (see 3) in 2.5),

Ildiv 3|l = | Tl x 84 + |T1l x 85, Alldiv T3] = 2| T.
By (2.20),

| div 7 = ]

divRam(R)H
A

/% Sncr) dA(R) — /M 5e(R)d,1(R)“

=/ 5b(R)d/1(R)+/ Je(R)d/I(R)
EA EA

(we have used the fact that the measures Jo, Obr) dA(R) and S, Oe(r) dA(R) are
supported on nonintersecting hyperplanes of R”t! | because & b(R)y=a, @e(R)=b
for Re &,).
Applying % , we find
AT = [ o dAR)+ [ Speqry dAR)
Sy EA

iy / Syiry AA(R) + 1 / Seii) dA(R).
A Sy
Using (2.23) and fact that div7T =0, we get
0=aivT = [ (Gym - dum) du(R),
1
whence (by (2.23) and (2.24))

1T =1 /@ Soiry du(R) = 1 /@ Sery dU(R),
1 i

(2.23) = ‘

(2.24)
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and we arrive at (1.22). Finally,

1/ || div R|| du(R / || div ZR|| dA( R)</ 1%, div R|| dA(R)

(2.25)

- /M Spery + by dA(R) = /¢ Setr) + Oor dAR) = 2| T,
A 1

and we have (1.21). (The inequality in (2.25) means that 4R may be a closed curve,
and then div#R = 0; if ZR is not closed, then div. AR = ZdivR). Theorem
A is proved.

2.9. The proof of Theorems B’ and B. We take a solenoid T € Sol(R") and consider
the corresponding shift invariant measure v = vr defined in 2.8 (see (2.13)). Our
proof will be based on the Birkhoff-Khinchin ergodic theorem ([15]). We apply it to
the measure space (S, v) with S := Slow(R""!). Let 7 denote the shift 7: § — S
defined by "

t(¥)(#) = (f(+1),1), where p(1) = @, 1, ves.

Since 7 is an automorphism of the measure space (S, v), the ergodic theorem asserts
that for every 0 € Ll(S v) and for v-almost all y € S the limit

(2.26) Jim ﬁ Z 0(ty) =: 6(y),
j=—k
exists, and
(2.27) / 6dv = / 6dv.
S S

2.9.1. With every motion y € Slow(R"*!) we associate its “first hour part” yp :=
7 | Sjo,17 (see 2.8.2) and the corresponding charge Ro = B() € #o,1;- We take a
test field ¢ € Z1(R") and put 0,(y) = (%Ro)(p) (= the circulation of ¢ along the
curve ZRy).

The function 6, is continuous and bounded on Slow(R"*'). Consequently, 6, €
L'(S, v), and we can apply the ergodic theorem to 6 = 6, . Let y be a slow motion,
y(t) = (f(), 1), f, € Lip;(R"). Then

0,('y) = (il s J + (),

and the expression under the limit sign in (2.26) becomes (2k)~! fi([—k; k])(¢) =
R,.(9) . Hence there is a set N, C S such that v(N,) = 0 and the limit R,(¢) :=
limy_, R, (¢) exists for every y € S\ N, .

Now we choose a countable set D* C 9 I(R") uniformly dense in Z'(R") and
put N = Upep+N,. Then v(N) =0, and for y € S\ N the limit R,(p) exists for
every ¢ € D*. Forafixed k=1,2,..., we have

varR,, < TIELip(fy) 2k <1

(see (1.7)). Hence, by the Banach-Steinhaus theorem, for a fixed y € S, the existence
of R,(p) forall ¢ € D* implies its existence for all 9 € I(R"), and R, is a charge
in R" with varR, <1.
We have obtamed the following result: for v-almost all y € Slow(R"*!), the limit
R,(p) exists for all ¢ € Z'(R").
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2.9.2. Now we recall formula (2.21): h

T(0) = AT )(0) = [ (AR(9)dv () = [(Op)d.
Combining this with (2.27), we see that
(2.28) T= /S R dv(y), v=uvr
This is a decomposition of T ; indeed,

varT < /vafR_de()/) S/ dv =varv =varT,
s s

whence varR, =1 for v-almostall y, and varT = [ varR, dv(y).

2.9.3. Now, let T be an extreme point of the unit ball Bg,1 . We have obtained a
decomposition of T into charges R, , which, clearly, are also solenoidal. Hence (see
[51) R, =T for almost every y.

2.9.4. The preceding statement implies Theorem B’.
Indeed, if 7 € Sol(R"), then vr-almost all motions y € Slow(R"*!) satisfy

HR) CsptT, f,:=Py.

This follows from (2.19) and (2.21), where we can take A = [k, k], k=1,2,...
(excluding a countable union of exceptional sets of measure 0 afterwards). For
a fixed K, the relations vari, = varT, (2.21), and (2.19) imply the inclusion
Jys CsptT for v-almost all 'y € Slow(R"*1) ; see 1.2.

So, if T is extreme in Sol;, then, by 2.9.3, T = Rfy for some y € Slow(R"*1).
But we may also assume that (2.29) holds, so that all the conditions (1.16)-(1.19) are
fulfilled. Hence T € extrSol; = T € elem. This proves Theorem B’ and hence
Theorem B.

§3. THE PROOF OF THEOREM C

3.1. Reduction to the Approximate Decomposition Lemma. We deduce Theorem C
from the following assertion.

Lemma 3. Every charge T € N{(R") can be decomposed into the sum of charges
P, Q € N\(R") such that Q is completely decomposable into simple curves and

var(div Q) > % var(div T).

Suppose the lemma proved; applying it to 7", we obtain charges P, and Q; . Now
we apply the lemma to P; to obtain P, and Q,, then apply the lemma to P,, and
so on. As a result, we obtain two sequences of normal charges {P;} and {Q)} such
that for every natural number k

(3.1) Q+Q+ - +Q+P =T,

(3.2) IOl + 1Qall + -+ - + 1Qkll + |1 Pell = T,

(3.3) 1div Qull + | div Qaf| + - - - + || div Q|| + | div P || = || div T,
(3.4) var(div P) < (1—90)kvar(div 7).
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By (3.1) and (3.2), the series Q; + O, + ... converges (in the variation norm) to
a normal charge Q, whereas P, tends (in the same norm) to a normal charge P
satisfying

(3.5) P+QO=T, |P|+IQl=ITI.
By (3.4), var(div P) — 0 as k — oo , whence
(3.6) divP =0, divQ=divT.

It follows from (3.1), (3.2), (3.3) that Q is completely decomposable into charges
Or, k =1,2,... and, since every Qy is completely decomposable into simple
curves, so is. Q. Together with (3.5) and (3.6), this proves Theorem C, and now we
must prove our lemma.

3.2. The proof of Lemma 3. We assume that div¢ # 0, since otherwise we can put
P=T, Q=0. We take a number / > 20vadT)  and apply Theorem A with this /

var(div T)
to the charge S € N(R""!) defined by

S:=Tx (50—51)+diVTX[O',l].

It can easily be checked that its divergency is zero. We obtain a decomposition

(3.7) S= [ Rdu®),
<
(3.8) IS|l = /¢ IR du(R).
(3.9) IS| =1 /@ Soiry du(R) = | /¢ Sor du(R).

Up to a set of ||div T'||-measure O, the support of the charge divT in R" splits

into two sets E, and E_, where ET(X) = +1 and aKIT(x) = —1 ,respectively.
Then for ||S||-almost every X € E. x (0; /) we have S(X) = +dX,,1, and, up to a
|IS]|-null set,

sptSNR" x (0; /) C (Ex UE_) x (0; I).

It follows that the restriction of u-almost every curve R to the “sprip” R” x (0; /)
is representable either as an oriented vertical interval

+0, x [a; b]

(where z € Ex+ and a =0 or b =1) or as the union of two such intervals. Let
N:i={Re€:bR) e€E_x(0;])}, ,
M:={Re&:bR)€E_x(0;]), e(R)eR"x(0;1])};

then for u-almost all R € 91\IM

_
R.R" x (0; 1) = dpp(ry X [@D(R); 0],
whence (because R € M, #b(R) < %)

N~
N~

var (RLR" x {0}) = var(R) — var(R.R" x (0; /1) =1 - @b(R) 2 -



DECOMPOSITION OF SOLENOIDAL VECTOR CHARGES 865

for u-almost every R € 9. Hence,

var(T) = var(SLR" x {0}) = / var(RLR" x {0}) du(R)
<

\ ! 1
> [ (R < 0] duR) > [ 3 UH(R) = (1),

Thus,
(3.10) p(OM\Mm) < gvar(T) < —2——var(T) = ivar(T)
) =1 2021;;(?) 10
var(div

(here we have used the lower bound for / stipulated at the beginning of the proof).
But, on the other hand, it follows from (3.9) that

% var(div T) = % var(div T_E_) = var (SLE; x (o 21 /2))

= 1 [ var(éym) du(R) = luom),

i.e., u(M) = 1var(divT). Subtracting (3.10) from this identity, we obtain

,u("ﬂ) > u(MNN) = u(9) — u(I\M) > %var(div T)-— % var(divT) > % var(div T),
whence

(3.11) uomn) > % var(div T).

Now we put

P .= / (RLR" x {0})du(R),
e \m

Q= [ (RRx (0} du(R),
m

and check the desired properties. Clearly P, Q € N;(R"). Restricting (3.7) and (3.8)
to R” x {0}, we get

T = SLR" x {0} = / R.R" x {0} du(R),
<
I = [ISLR”™ x {0}]| = /c: |R.R" x {O}|| du(R).

Hence, T = P+Q and ||T|| = |P|[+||Q||; Q is decomposable into curves R.R" x {0}
(not necessarily simple, but we can assume them to be simple, since otherwise we
decompose them into simple curves and “move” “extra” closed curves into P ). For
p-almost all R, the charge R.R” x {0} is a curve with the origin #b(R) € E_ and
the end Ze(R) € E, . Therefore

|divR|| =divR.E, —divRLE_
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for u-almost all R € 9, whence
I div Q|| = ” /m div(R.R" x {0})du(R)H
= ( /m div(R.R" x {0}) du(R)).E,
~( /sm div(RR" x {0}) du(R)).E-
- /m (div(ReE, x {0)) — div (R.E_ x {0})) du(R)

_ /m I div(R.R" x {O})]| du(R)

(we have used the relation E, N E_ = @, which implies that the negative and the
positive part of the divergence of the curves R.R” x {0} cannot mutually cancel
out). We see that Q is not only decomposable, but also completely decomposable
into simple curves.

Now it remains to verify that

|divT| = | divP| + || divQ|,  var(divQ) > — var(div T).

1
10
The last estimate follows from (3.11):
var(divQ) = / var(div(R.R” x {0})) du(R).
m

To prove the first one, we introduce
M_:={Re¢:bR)€E_x(0;])},
M, :={Re¢:e(R) €E,x(0;])}.
Clearly, 9 = 9_ N9, . We define a new charge P’ € Ni(R") by the formula

P =% (/ e(r) d1(R) — / Ib(R) d/‘(R).)'
M, \M M_\M

By the definition of Q,

divQ = [ (0w~ duiw) di(R).

Summing the last two identities and recalling (3.10), (3.11), we get

aivos P =A( [ sudu® - [ o du®)

(3.12) o | |

= 7AISIE: < (05 1) = [ISlI-E- = (0 N)

=||divT||.E; — ||divT||LE_ =divT.
Hence divQ+ P’ = divT . Combined with Q+ P = T, this implies that P’ =divT.
But we can also write an identity similar to (3.12) for variations and obtain

|| div Q|| + |IP']l = || div T||
and
|| div Q|| + || div P|| = || div T'||.

Our lemma is proved, and hence also Theorem C.
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