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Phase transition in subhyperbolic Julia sets
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Abstract. We study the pressure function for critically finite polynomials and analyze the
case when this function fails to be real analytic.

1. Introduction and results
1.1. In this paper we study subhyperbolic polynomials

FiQ)=z'+--- (1)

with connected Julia sets.
The Julia set J = Jr of a polynomial F is defined as the boundary of the domain

Q=Qr={zeC: F'z > o},

the basin of attraction to oo.
For ¢ € C let k(c) denote the degree of F at ¢. Then

Crit F ={c : k(c) > 2}

is the set of critical points. The Julia set is connected if and only if all critical points
have bounded orbits. In this case the domain 2 is simply connected and we can consider
the conformal map

p:D_ {lz]| > 1} =» Q,
i) = z4--- at oo.

Il

(We have I(p’(oo)l = 1 because of the normalization (1).) This map conjugates F : Q2 O
with the dynamics T : z — z¢ on D_:

poT =Fog.

The main object of our study is the spectrum B(t) which we define in terms of the
derivative of the conformal map ¢:

1 'O 1d
B = lim ogfmlw(rf)l |dg|
r—>1+0 log:

, teR. 2)

1 This material is based upon work supported by the National Science Foundation under Grant No. DMS—
9207071. The Government has certain rights in this material.
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It will be shown that this limit exists in the subhyperbolic case. The integral means in
(2) have the sense of the partition functions corresponding to the measure of maximal
entropy, or harmonic measure on J and therefore B(t) can be seen as an analogue of
the free-energy function in thermodynamics. Another thermodynamical interpretation of
B(t) comes from the following.

Definition. Let 6 be an integrable function on T = 9. Then the pressure P(6) of 0

with respect to the dynamics T : z — 74 is defined as the limit

o1
P(g)znliﬁ}o;l"gd Z eSO (3)

rank /=n

provided that this limit exists. In (3) the sum is taken over all d-adic intervals of rank
n and

1
0% — [ o,
1] Jy

n—1
5,0 % 6ot
i=0

1.2.

PROPOSITION. Let F(z) = z% + - - - be a polynomial with connected Julia set. Define

0(0)=0r@)= Y (k(c)—Dlogle() —cl, ¢ €D,

ceCrit F

where ¢(¢) denotes the radial limit of ¢ at ¢. (It is well-known that ¢(¢) exists almost
everywhere, and @ € L' (0D).) Then

B@)=P(—t0)—1, teR,

in the sense that the existence of any of the limits (2) and (3) implies the existence of the
other.

Proof. Differentiating the identity
9(T"z) = F'(p(z)), ze€D_,
we obtain
n—1 ) n—1 )
o (T [ [T/ @) =[] Fle(T'2)¢' @).
j=0 j=0
Since ¢'(T"z) — 1 for all z € D_, we have

0@ =112 (#) T, zeD.,
b(z) = log |¢'@)| = = 272, 0(T72),

where
F'(p(2))

0(z) = log T |
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and 0(¢) is the radial limit function of 6(z).
The function u(z) = log ¢’(z) has the Bloch norm

luls = sup (1= 1z?) lu(2)|

at most six (see [Pom, §4.2]). Therefore the function b = Re u has the following property
(see [Ma, §L.1]): if z € D_, |z] < 2, and I(z) is the arc on T of length |z| — 1 centered
at |z| ™' z, then

|b(z) — bry| < const, 4)
where the mean value b; is defined as the limit
= i .
by Jim (b(rz)),
For any d-adic interval I of rank n, we have
by = —(S,0);.

By the distortion theorem,

/ |<P’(r§)[' ld¢| < d™ Z e,
r=14d—n

rank /=n

(we write z = z; for I = I(z)), which is

=< d™ E e

rank [=n
- 4" Z e~ 1(5:0);
rank /=n
O
1.3. A metric 0 (2) |dz| defined in a neighbourhood of J is called admissible if o is

continuous as a map to (0, +00], and satisfies the inequality

o(@) < constz |z —a;|™"
i

for some 1 € (0, 1) and some finite set {a;}.
A polynomial F is called subhyperbolic if the map F : J O is expanding with respect
to some admissible metric, i.e.

o (F"2) |(F")(z)| > constq"o (z)

for some g > 1. It is known (see, e.g., [M, Theorem 14.4]) that F is subhyperbolic if

and only if

(1) every critical point on J has a finite orbit, and

(2) every critical point outside of J has an orbit converging to some attracting periodic
cycle.
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A special case is when there is no critical point on J. In this case the dynamics
is expanding for any non-singular metric (in particular, for o = 1) and F is called
hyperbolic.

For hyperbolic polynomials F the function 6 is continuous and therefore P(0) is
equal to the usual ‘pressure’ (see, e.g., [B], [R1]). Moreover, 0 is Holder continuous
(this follows, for instance, from the fact that Qf is a John domain, see [CJ]) and by
Ruelle’s result [R2] we have the following:

PROPOSITION. In the hyperbolic case, the spectrum B(t) is a real analytic function on R.

For general subhyperbolic polynomials the situation is different. It may happen that
the spectrum B(¢) has a point ¢, at which the first derivative is dlscontlnuous In this case
we will say that the polynomial has a phase transition and call z a phase-transition point.
We will see that there is at most one phase-transition point and ¢, is always negative.
The simplest example is provided by the following.

1.4. Chebyshev’s polynomials. The polynomials P, are defined by the functional
equation
Pi(z+z ")y =2+,

eg, P,(2) =72 =2, P3(z) = 73 — 3z, etc. The critical points of P, are the points
7j ‘
cj=2cosjj, 1<j<d-1,

and their orbits are the following:

F
C1,€3, ..., €41 —» —2
! if d is even,
C2,C4y...,Cq-2 = 2 o
and
52
€1,€3,...,¢2 —» —2 0 if d is odd.
€2, ¢4y €41 > 20

In the latter case the polynomials —P; are not conjugate to Py:

_F
€1,C3,...,Ca—2 —» —2

¢

€2, Chy vy Cam1 —>» 2,
(e.g., —P3 ~ z3 + 37). The Julia set of £P; is the segment [—2, 2], and the spectrum
B(t) = max{—t — 1,0}

has a phase-transition point f, = —1 (see Figure 1).

The polynomials P, and z¢ are known to be the only polynomials with a smooth
Julia set.

The following theorem is the main result of the paper.
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THEOREM.

(1) Let F be a subhyperbolic polynomial with connected Julia set. Then either
(1) B(t) is real analytic on R, or
(ii) there is a (phase-transition) point t, < —1 such that

B'(tc — 0) < Bt +0),

B(¢) is linear (i.e. = B'(t. — 0)t — 1) on (—o0, t.], and is real analytic on
[t., +00) (see Figure 2).
(2) If the degree of F is 2 or 3, then the only polynomials satisfying (ii) are P, and
+P; (up to conjugation), but there are polynomials of degree 4 satisfying (ii) and
not conjugate to Py.

3 22 \ 1 2 3

N

FIGURE 2.

We want to make some comments concerning the stated result.

1.6. It will be shown (in Corollary 6.2) that no phase transition occurs unless either
F ~ £Py, or F has a fixed point @ € J and critical points ¢, . .., ¢,, such that
F(ci)=...=F(cpm) =a

ik(c,) —d—1. ®)
i=
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It is easy to see that no quadratic polynomials satisfy (5). The situation is completely
different in degree 3. There is a whole family {F_}.cc of polynomials satisfying (5):

F.(z) =2 — 3¢z +2(c® —¢)

(in fact, every F satisfying (5) is conjugate to some F.). To study this family we apply
the following necessary condition (see §1.8. below):

|F'(a)| > | F'(b)| for any fixed point b # a (6)

which turns out (by pure chance!) to be inconsistent with the requirement that the Julia
set J. = Jp, must be connected. This can be seen from Figure 3 where we built the
‘Mandelbrot set’ {c : J. is connected} and the region {c¢ : F. € (6)}. The latter is the
exterior domain bounded by the outer curve in the picture. In other words, there is no
phase-transition phenomenon for cubic polynomials (except for & P3) simply because we
are considering only the polynomials with connected Julia set.

FIGURE 3.
1.7. It is natural to try to extend the notion of the B(¢)-spectrum to disconnected
Julia sets. It can be shown, for instance, that in the connected case,
. logL,(e
B =11+ lim 2L %
e—>0 |10g EI

where
L,(e) =inf ) _ 8],

the infimum being taken over all covers of the Julia set with discs of radius 8, and
harmonic measure (evaluated at co) less than ¢, cf [CJ]. This representation makes no
reference to conformal maps and therefore (7) can be used as a definition of B(¢) in
the general (subhyperbolic) case. Then the first part of Theorem 1.5 remains valid, as
well as the statement concerning quadratic polynomials. But of course, there exist cubic
polynomials (with disconnected Julia sets) such that S(¢) has a phase transition point.
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1.8. There is a criterion (see §6.4) for the phase transition expressed in terms of the
multipliers of the periodic points of F. For b € Fix F? we denote

ue) = () @)

Then a subhyperbolic polynomial not conjugate to P, has a phase transition if and only
if there is a fixed point a and a positive number § such that

bePerF, b#a= ub) <ua) -3,

It is perhaps worth mentioning that no periodic point a of period > 2 can have such a
property (except for the case F ~ —P;, d odd), and also that for every periodic point
a € J, and every é > O there is a periodic point b # a such that

u(b) < p(a)+34.

1.9. The multipliers 1(b) characterize the local behaviour of the conformal map (or
harmonic measure) at the periodic points, so that at points with larger multipliers, the
domain Qr has ‘a wider opening’. This provides the following geometric interpretation
of the phase transition case: there is a point a € J (or two points, if F ~ 4P;) that is
more ‘exposed’ than any other point of the Julia set. This point a provides a prevailing
contribution to the integral means of the derivative of the conformal mapping. Every
preimage of a must be a critical point (this is exactly our condition (5)) because otherwise
the structure of the Julia set at the pre-image points would be the same as at a.
Figure 4 shows the Julia set of a critically finite polynomial

1+iv2
F(z)=(@zZ—¢)@E+3c)—3c, c= —
The encircled point a = —3c is responsible for the phase-transition phenomenon. It can

be seen that this point is ‘more exposed’ than any other tip point in the picture. The
Julia set has the same structure at all tip points except a. Figure 5 is the blow up of this
Julia set near the point a.

It is instructive to compare Figure 4 with the Julia sets of the polynomials

22+ (Figure 6),

(z—=0)2%@z+2c)—2¢c, c¢= \ i——’_é—«/—? (Figure 7).

These polynomials are also critically finite but they have a real analytic spectrum. The
Julia set of z> + i has tip points all similar to each other. The Julia set in Figure 7
does have a distinguished point (a = —2¢, encircled) but the corresponding tip is ‘less
exposed’ than the other tips.

2. Some analytic properties
In this section we study the analytic properties of the conformal map

¢:D_ — Qp

(2F is the basin of attraction to co of a polynomial F with connected Julia set).
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2.1.

LEMMA. Suppose that the Julia set Jr is locally connected. Let a be a repelling periodic
point of F. Then for any point

fo € (p_l U F™™a

m=>0
there is 8 > O such that if ¢ € T, |¢ — ¢l < 8, then
lp(©) = (o) = diam g (£5)
In fact both quantities in the latter relation are
= I; _ gollogu(a)/Dlogd

where D is the degree of F™ at (o) for (all) sufficiently large m.

Proof. If k is the degree of F at the point ¢({o), then for ¢ close to ¢, we have

IFo(¢) — Fo(o)l = lp(T) — o(T o)l < o) — 9(o)l*,
. —~ . T . —~\\k
diam Fo (£ fo) = diam ¢ (T; T§0> = (diam ¢ (£0)) -
Thus it is sufficient to consider only the case where ¢ is a fixed point of the map
T:¢w ¢4
Since the point a is repelling, there is a neighbourhood ¢/ such that Fly is univalent
and Y C FU, and there is a conformal map t : FU{ — DD such that

FU

Tlu T

2> F'(a)z

w~'D ~ D

Moreover, we can take U/ such that 7 is bi-Lipschitz.
By [M, Theorem 18.3] we have #p~'a < oo, and there is an arc I C T with center
at £y such that
@ (I\{¢o}) C U\{a}.

Let 1% denote the two components of I\T~'1 (T~! denotes the branch that takes ¢ to
Zo). We have dist ((p(li), a) > 0, and

|z (T7"0) | =" 1(ze) @), el
Therefore if £ € T™"I*, then
() (0)| = diam T (£Z0) = u™".

This implies the statement because the map t has bounded distortion. O
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2.2.
LEMMA. Suppose F is a subhyperbolic polynomial and a € Jr is a preperiodic point. .

Then for any n > 0 there is a > 0 such that

f lp(¢) —al™du() < oo
for every positive measure (. on T satisfying
w() S|I|", (I is an arbitrary open arc on T).

Proof. This is a consequence of the last statement of Lemma 2.1. (]

2.3. John’s property. Let F be a subhyperbolic polynomial with connected Julia set.
Then Q2 = Qp is a John domain (see [CJ]), which means that for some ¢ > 0 and all
Zo € 2 there is an arc y C 2, 0o € ¥, such that

dist(z, J) > clz —z0l, zey.
In this case the conformal map ¢ is Hélder continuous and
diam ¢ (I (2)) = (2] = 1) [¢'(2)| = dist (¢(2), 3S2) ®)

for any z € D_. In fact the Holder condition holds on every scale, which implies the
following diameter version of the (Au)-condition: there is n < 1 such that if / and
are two arcs on T, and I C I, then

M < const (I_I_|)" 9)
diam (1) ~ 1)

One more property of John’s domains is stated in the following lemma.
LEMMA. Let ¢ : D_ — Q be a conformal map onto a John domain Q2. Then there is
C > 0 such that for any arc I C 3D and any point a € 3%,
1
m1ax10g|(p—a|57/10g|(p—a|+C. (10)
1

Proof. Because of the Bloch property (4) of the function b = log |¢ — al, it is sufficient
to show that
max |¢ —al S l¢ (z1) —al.

Let ¢ € I be the maximum point. If diam @(I) 2 |@(¢) — a|, we have
lp (z) —al = dist(p(z7),09)
2 diamg(D) 2 lp () —al.
On the other hand, if diam ¢! < | (¢) — a|, we have

lp () —al = le@)—al—le)—e @)l

® ) 1
>l (¢) —al — constdiam ¢(1) > 510 @) —al.

X
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24.

LEMMA. Let F be a subhyperbolic polynomial with connected Julia set and let a € J be
a strictly preperiodic point of F. Denote )

0@)=loglp(@)—al, ¢eT.

Then for any integer n and any d-adic interval I of rankn,

max 5,0 — (5,6); < C (11)

Proof. For an arc I C T let I denote the minimal arc on T containing I and the point
of ¢~ la which is the nearest to /. We claim that

di 1
m}axe — 91 < M__).

—. 12
~ diam ¢ (1) (12)

Indeed, if diam ¢(/) < diam (p(f), then (12) follows from Lemma 2.3. Suppose now
that diam ¢(I) < diam (/). Let &min, {max be the points of I at which 0 attains the
minimal and the maximal values. We have

¢ (Cmin) — @l = | ({max) — a| — diam ¢ (1)

and, by Lemma 2.1,

19 Cow) —al =< diam p (otman)
= diam(p(f).

1

(We can assume that I is sufficiently close to ¢~ a, otherwise the relation is still true

because both sides are =< 1.) Therefore,

© (Cmax) — @
mlaxe -6 < lOg m
I(P (Cmax) - a[
I(o (é'max) - a| - dlam¢(1)
diam ¢ (1)

19 (Cmax) — al — diam (1)
diam o(I)
diam (1)’

To prove the lemma we must show that if / is an interval of rankn, then

diam @(T/ 1)
D=

—— < const.
diam o(T/ 1)

J

By (9), it suffices to prove that if n > 0, then

(i71)
Yl=] =c. (13)

7 \IT71]
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Let integers /; be such that ~
|Til|=<d™b.

Then the left-hand side of (13) is

1
- Z (d’ ”) Z Qi+
where Q0 = d7 > 1. We now fix some number M and consider the sequence
l < ji <-++ < jm < n of the indices satisfying /; > M. Then we have
Jer1r — je = lj —const,  (k < m), (14)
and

z Qticth < Z Q "kt < const .
% k

This implies (13) because
Z Q"+ < const.

{j:lj=M}

To prove (14) observe that dist(7/1,¢p 'a) < d7% and, consequently, the
intervals 77+, TJ+2] .. are at a distance < d~U*!, d~i*2 ... from the finite set
¢ YFa, F?a,...}. This set is separated from ¢~'a because the point a is strictly
preperiodic, and it will take at least (I; — const) iterations to get anywhere close to
o la. O
2.5.

Remark. The same argument shows that if  is an interval of rankn and
{1 = I NFix T”,
then

[mlax S,ﬁ} —S$,00¢) <C.

The only change in the proof is that instead of Lemma 2.3 we use the inequality

m1ax6 —0() <C. (15)
If ¢ is the point of ¢ ~'a nearest to I, then (15) is equivalent, by Lemma 2.1, to the
inequality

M > const.

Cmax — o

The latter follows from the fact that
dist ({0, Fix T") =d™"

ie., if |Zo — n| « d™" for some n € Fix F", then IT” {o —n| < 1 which is impossible
since {o is strictly preperiodic.
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COROLLARY. If F is a subhyperbolic polynomial of degree d with connected Julia set,
then

pwy —t+1=lim ~1og, Y |(F) 0@

teFix T

Proof. This follows from Proposition 1.2, Lemma 2.3 and the above remark. O

3. Perron—Frobenius operator

3.1. Let C(T) denote the space of continuous functions, and C(T) = {f € C(T) :
f > 0}. Suppose g € C(T). The Perron—Frobenius operator L = L, corresponding to
g and the dynamics

T:z|—>zd, z €T,

is defined on C(T) by the equation

LH@ = Y gWfG), xeT, feCD).

yeT-'x

For the iterates of L, we have the formula

L)@ =Y &, (16)

yeT—"x

where
n—1 )
gn = Hg oT/.
=0

The conjugate operator L* acts on the space M(T) of Borel complex measures. For
example, if §, is the §-measure at x € T, then

L= ) 88, an

yeT~'x

The best known case is when the function g satisfies the Holder condition and does
not vanish on T (see, e.g., [B], [R1]). For « > 0, we denote by H,, the space of «-Holder
continuous functions on T:

Ho ={f € C(T) : Ifllq < o0},

Ll = 1 et sup L= L]

xwer X — x|
It is clear that if g € H,, then L, also acts on H,.
THEOREM. (Ruelle’s Theorem.) If g is a strictly positive function in H,, then the number
A = ¢Plogs)

is the spectral radius and an isolated eigenvalue of multiplicity one of the operator
Ly :He = Ha.



Phase transition in subhyperbolic Julia sets 139

It is immediate from Ruelle’s theorem that the pressure function
te R~ P(tlogg)

is real analytic, and this implies the corresponding fact for the spectrum B(t) in the
hyperbolic case (see §1). What we would like to do is to extend Ruelle’s theorem to
certain Holder continuous functions g vanishing at some points of T. We introduce the
following.

Definition. (cf Lemmas 2.3 and 2.4). We say that a function g € C,(T) satisfies the
condition (By,), or (B), if

#g71(0) < 0o, logg e LI(T),
and for any d-adic interval I € T of rankn we have
max g = exp{(log &)}, (Bw)

or
mlax &n < exp{(log g,),}. (B)

3.2.

THEOREM. Suppose a function g € Hy satisfies the condition (B), and suppose there are
continuous functions g € (B) and u € (By) such that
luoT

~ (H)
g u
L. Ifthere exist a probability measure v, and a positive number X such that
L*v = Av, /udv #0, (18)

then the conclusion of Ruelle’s theorem holds.
I The following condition is sufficient for the existence of v and A satisfying (18):
S cu”l(0)

{ S=T""8\¢g7'(0)
The proof of the theorem is obtained by adjusting a known method to the case under
consideration. For the sake of completeness, we repeat some arguments of the papers
[HK], [Ry] and [P]. The first part of the theorem is proved in §3.3-3.6 below, and the

second in §3.7 and 3.8.

= §=4. (X)

3.3.

LEMMA. Suppose g € C.(T) satisfies (B) and (H) with some g € (B), u € (By), and
suppose there are v and ) satisfying (18). Then

v(I) < A™" max g, < A" exp{(log g,),} (19)
for any n and any interval I of rankn. Futhermore,

n n
12 P

and hence A is the spectral radius of L,. The pressure P(logg) exists and is equal to
log, A.
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Proof. Let he | x; as € > 0, hy € CL(T). Then
v(Il) = lirr(l) (he, v)

= A" lin})(L"hg,v)
W o / en(I0)dv(x) + (1) [20(01) + £ (3]
aD\(1}

where (Ix) is the symbolic notation for the point I N7 "x, and 9. are the endpoints of
I. Therefore,
v(l) <A™ max gy.

On the other hand, (H) implies

1l uoT"
8n = =T )
8 U
and
)“—n
v(l) 2 ——~———/ udv.
max; g, maxy u Jap

Since the latter integral is positive, and
max gy maxu < exp((log §uu);}

= exp{—(loggn)}

we have (19). Since L is a positive operator,

I = =) 20 &
yeT"x 0o
< Z maxgnxA”Zv(I)xk”.
rank I=n !
O
3.4.
LEMMA. Suppose g € Hy, g > 0, and
123 ] ey S 1-
Then VN M = M (N) such that
1LY £, S ™0l + M S lloo- (20)
In particular we have
Iz fl,, st @1)

Proof. We have
[(LY f) () — (LY ) ()]
|x — x/|*
Ix) — Ix'
3 LA :_j;va( D g o+ 3

rank /=N rank /=N

aVa™ N gl f oo +d= VI F 1LY 1],

‘f(IX) - ],Cglx )IgN(Ix/)
|x —x'|

IA
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and we see that (20) holds with
M=1+d"|gyl,.
To prove (21) we fix N such that
1271, < alFlla + Ml fllo

for some g < 1. Then, by induction, we have

CM
1% £l = a1 b 7= 1 o

with C = max ||L"||¢(r)- O

3.5. Quasicompactness. A Banach space linear operator L is called quasicompact if
LY — k|| <1

for some compact operator K and some integer N. An equivalent statement is that
the image [LY] of L in the Calkin algebra (i.e. bounded operators modulo compact
operators) has norm strictly less than one. This implies that the spectral radius of [L]
in the Calkin algebra is strictly less than one, and therefore there is r < 1 such that the
part of the spectrum of L lying outside of the disk {|z| < r} consists of a finite number
of eigenvalues that all have finite geometric multiplicity.

LEMMA. Any operator L on H, satisfying (20) is quasicompact.

Proof. Fix N such that

[ ), < oo Il + M f s £ € Ha
Also fix m > 1 (Md=®" « 1 is sufficient) and define a projection operator P on H,
by the requirement

{ Pf=f onT™™l,
Pf(e") is a linear function in ¢ for ¢’ € I, rank I = m.
It is clear that dim PH, = d™ < oo, and it remains to check that
|ILY —LNP| < 1.
Since ||P|| < 4, and
If = Pflle <d™" I f = Pfllgs

we have

1LY (f = PP, = wIf—Pfla+MIf - Pflls
< wlf = Pfla < 31£1,
O
Returning to the proof of the first part of Theorem 3.2, we see that the last three
lemmas imply that A is the spectral radius and an isolated eigenvalue of L = L ¢ Hq O.
It remains to show that
dim () ker(L — 1)" = 1.

n>1
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3.6. Multiplicity of .. We first prove
dimker(L —A) = 1. (22)
Observe that if f satisfies Lf = Af with A > 0, then L |f| = A |f|. Indeed,
(A fLv)y = (LflLv) =(LIfl,v)
= (If1,L*v) = (Ifl, )

and L|f| = A|f] v-ae. and hence everywhere because suppv = T (by Lemma 3.3).
Next observe that if f is a real-valued eigenfunction, Lf = Af, then either f > 0 or
f < 0. Otherwise, we can find a non-trivial eigenfunction f=0Gg f=Ifl—Ff
which is zero on some interval. The equation

MEE) = Y gFO)

yeT"x

then implies that f must vanish on a dense set, hence everywhere.
Suppose now that we have two real functions fi, fa satisfying

Lfi=Af;, fi=0(=12).

/fjdv=l,

f i~ foldv = ‘f(fl — v

and f; = f>. This proves (22).
It remains to show that

Normalizing them by the condition

we have
=0,

ker(L — 1)? = ker(L — A).
Suppose this is not true. Then there are f # 0 and & such that
Lf =Af, Lh=Ah+cf, (c#0).

By induction, we have
L"h = A" (h +ner™" f)

which contradicts the relation ||L"|| < A". O

We turn now to the proof of the second part of Theorem 3.2.

3.7.

LEMMA. Let g be a Hélder continuous function satisfying #g~1(0) < oo. Then there exist
A > 0and v € M(T) such that
L*v = Av.
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Proof. For ¢ > 0 let L, denote the Perron—Frobenius operator correspomding to the
function g + ¢. By Ruelle’s theorem we have

Live = Aevg (23)

for some probability measure v, and A, > 0. Since the numbers A, are bounded (for
¢ < 1), we can find a sequence ¢; — 0 such that

w*
)ng — A, Vg, =V,

and take a w*-limit in (23). To prove that A > 0, it remains to show that the numbers
Ag are bounded away from zero. But it follows from the condition #g~1(0) < oo, that
there is a T-periodic point ¢ € T such that g ## 0 on the orbit of ¢. Therefore,

g,(¢) > c" for some ¢ > 0

and
LI Z e (1og(g+e)n);
rank /=n
= Z max(g + &),
rank I=n !
> g(&) ="
Thus A, > ¢ > 0. O

3.8. Condition (X). We finally show that (X") implies

/udv>0

for any positive measure v satisfying L*v = Av, A # 0.
Suppose f udv = 0. Then v is concentrated on a finite set S C ¥ ~!(0). From (17) it
follows that
supp L*8x = T~ {x}\g ' (0).
Consequently,
supp L*v = T~1S\g71(0),

and L*v = Av implies
S =T718\g71(0).

4. The pressure function
4.1. Let g be as in Theorem 3.2 and assume that the condition (X) is satisfied. For
every t > 0 we have

P(tlog g) = log, (1),

where A(7) is the spectral radius of L.
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COROLLARY. The function t — P(tlog g) is real analytic on {t > 0}.

Proof. This function is convex on {t > 0} and therefore A(¢) is continuous for ¢ > 0.
Fix some point o > 0. Then there is B > 0 such that g’ € Hp for all ¢s in some
neighbourhood of 5. Let L) denote the Perron—Frobenius operator on Hg corresponding
to g'. It is clear that the map t — L, is real analytic.

Chose a single closed curve y separating A(tp) from the rest of the spectrum of L.
If ¢ is sufficiently close to %, the point A(¢) lies inside y and the operators (L(t) — z) are
invertible for all z € y. Consider the spectral projection

1
P = —_f(Lt—z)_l dz.
2mi v

Then ¢ — P; is an analytic map and hence rank P; = rank P;, = 1. It follows that P, is
a projection onto the eigenspace of L corresponding to A(z), and

LnPi f
P f

is an analytic function. O

A) = . (F#0, Pof = 1),

4.2.

THEOREM. Let g and g be Holder continuous functions satisfying (B) and
luoT
= E u
for some continuous function u satisfying (B,,) and the following condition:

(H)

there is a > O such that [ u=®du < oo for every positive measure | satisfying

n) S 1z,
Suppose also that both g and g satisfy the (X )-condition:
S c u~l(0) S c u~1(0) _
{ s=Ts\¢ ') 7 | s=1s\glo) ~ 5=

Then the pressure P(tlog g) exists for all t € R and is real analytic as a function of t.

Proof. For t > 0 the statement is proved in Corollary 4.1. It is also true for t < 0
because
P(tlogg) = P(|t|logg), t<0O. (24)

In fact, we always can (by multiplying by a constant) normalize u so that ut = 0. Then
for an interval I of rank n we have (u o T"); = ur = 0 and

(loggy), = t(oggn),;

(o (7))
= t|log| =
& u n/ 1

= —t(loggn); +1t(loguoT"), —t(logu),
= |t| (loggn); + | (logu),, (rankl = n).
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Therefore
Yo elloes)r < jn N lltoemigpy, (25)
rank I=n rank /=n
where
): — dP(Itllogé)

and ¥ is the probability measure satisfying
Ly = AD.
The last sum in (25) is < 1 because u is bounded and supp b = T.

It remains to show that the pressure function is analytic at + = 0. This function is
convex and therefore continuous. Let g, denote the function

g' t>0
g™ t <0,

and L, the corresponding Perron—Frobenius operator. Define A, and v, with respect to
L,:

Lv, = Apvy,
P(tlogg) =log, A;, (see (24)).
Since A(0) = d, for small values of ¢ we have A(¢) > d?/3 and
v(l) =< A" m[ax(g,)n, (n =rank ),
< d7P[d7Vglle]" < 111V

in particular, the measures v, have no atoms. From the condition on u, it follows that
there is o > 0 such that

[t <a= /u_“dv, < 00. (26)
From now on we will be considering only the values ¢ € (—a/2, o/2). Define
vioT
hy = gt+aé~'a = 8 d
Uy
where
N t>0
u = o+t t <0.
These functions all belong to some Holder space Hg, and satisfy the relations
1uoT
hf == = )
hf uf

with 4, = h_, and u, = ul"ly,. We claim that
LZ, He = Ao fly 27)

for some finite positive measures i;, namely for

1
du, = U—dv,, (see (26)),
t
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/u,du, =fu"'dvt 0.

Then by Theorem 3.2, A, is an isolated eigenvalue of L, : Hg — Hg. The
correspondence ¢ +— Ly, is an analytic map from (—o/2, a/2) to the space of operators
on Hg, and the argument in the previous section shows that the function ¢ +— A, is
analytic at 0.

To prove (27), let M = M, denote the operator of multiplication by v, in C(T). Then

(LaMf)®) = D GG

yeT1x

and

_ i (x)
= yTZ 803 5 U0 0)
= (ML/f) (),

and
M*L;‘l, =LM".

Since M*; = v;, we have

M* Aepe) = My = L);Vr
= LiM*u = M"L}, p,
which implies (27) because the measures w, and L} u, have no atoms. O
5. Homology

5.1. Let F be a polynomial, and let C be a non-empty subset of Crit F N J. Denote *
ot =07 =U,., F'C,
0 =0(C) =0+ C)uC.

LEMMA. Suppose that the set O is finite. Let

6@ =]l - el

ceC

for some positive numbers v(c) < k(c) — 1. Then G satisfies the homological equation

_1HoF
=5~ %
where H and Q have the form
H@) =[] lz—al*®, a) >0, (28)
acO+
0@ =[] [1z-b"®, a®)=o0. (29)
beF~10O\Per F

Futhermore, the zero set Q~'(0) has the property

{ ¥ C OF (= H™(0)

z=rimoto. ~ 27 (30)
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Proof. The map F provides an oriented graph structure on O: a — F(a). Without
loss of generality we can assume that this graph is connected. Deleting from the graph
all bonds originating from the critical points, we obtain some family I' = {y} of the
components. One of the components, ysna1, contains a periodic cycle and has no critical
points. All other ys contain exactly one critical point ¢, € y. Thus I' can be identified
with the set

(Crit Fn O) U {yﬁnal}

and has the natural structure of an oriented graph.

Define the rank of y as the maximal number v =0, 1, ... such that
N—=>"Y—>""—>Wn—>Y
for some components y;, ..., y, € I'. In particular, y has rank zero iff ¥ # Ygna, and
¢, € C\O™.

We define or(y) = 0 for ys of rank zero, and then define inductively the numbers
a(y) for y's of rank 1, 2, ... by the formula

a(y) = max a(y’),
y'—y

where
_ a) +v()

(") o 31)

(@ e, and v(c) =0 if ¢’ & C).
Let H, denote the polynomial

H, =[]z -a.

aey
If ¥ # Yfina, the divisor F~!y consists of the set
{faey:a#c},

of the critical points ¢’ € O such that ¢’ — y (they have multiplicity k(c’) in F~'y),
and of some divisor B, in F~'O\O. Therefore,

H (F@) = ][] @-a
aeF-ly
- 5@ [] G- ¢)H [[e-b.
17 ¢ =y beB,

If ¥ = ¥fina1, we have the same formula but without the term (z — c,).

Define
H = H |Hy|ot(y).

yel
Then H has the the form (28) and

_ H(F(@)
@ = SOH®

— 1"[ 1—[ Iz — c/‘k(C’)[a(y)—&(V’)] ]—[ H Iz — b[e®

yel y'—y yerl beB,
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has the form (29). Moreover, the choice (31) implies that if rank y > 0, then there is y’
such that ¥’ — y and ¢’ € Q~1(0). Thus we can find a critical point ¢* € C\O™, i.e. y
of rank zero, such that the orbit O* of ¢* does not intersect Q~'(0). This implies (30):
if ¥ 50, then ¥ NO* # @ (because FX C ¥), and since

(F'E)no* c F'2\Q7'(0) C =,
we have ¢* € ¥, which contradicts the assumption & C O™. O

The condition (30) is a version of the condition (X’) in Theorem 3.2. In fact, we have
the following.

5.2.

LEMMA. Let F be a polynomial with connected, locally connected Julia set, and let
¢ :D_ — QF be the corresponding conformal map. Then for any A C J and S C T, we
have

S=T71S\¢7'A= = =FIS\A, (T =0¢S).

Proof. By the monodromy theorem applied to the inverse branches of F on the outer ray
{o(rn) : r > 1}, we have

bel, neT, Fb=¢m=beo(T 'n).

Consequently,
Flo(S) = (T7'S),

and if § = T~1S\¢~'A, then
T=9) = ¢(T7'S\¢7'4)

@ (T7'S)\A
FlpS\A = FTIZ\A.

Il

Now we are ready to apply our results to the B(z)-spectrum of Julia sets.

5.3.

THEOREM. Let F be a subhyperbolic polynomial with connected Julia set and B(t) be the
spectrum defined in §1. Then

(1) B() is real analytic on (0, +00);

(2) B(t) is real analytic on R if the following condition is satisfied:

{ECCVﬂJ " )

T =F12\C

where C = Crit F, CV = N> F"C.
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Proof. By Proposition 1.2,
B(t) = P (—tlog, g)

where

g=[]lp—clo".

ceC
Represent g in the form
8 = 8180,

where
g1=Gop, G(z)= l—[ |z — c[k©-1

celJ

Applying Lemma 5.1 to G (and to the set CNJ), we obtain functions Q and H satisfying

1 HoF
G=— .
QO H

Define
§=g8'0o0¢p, u=Hog,

Then the functions g, g, u satisfy the homological relation (H) in Theorem 3.2 and have

the following properties.

(i) They are Holder continuous (see §2.3).

(i) g and g € (B). (By Lemma 5.1 the zeros of G and Q are strictly preperiodic, by
Lemma 2.4 this implies (B).)

(iii) u € (By) (by Lemma 2.3).

(iv) The zero sets of u and g satisfy (X):

-1
{SC” © = S=0

S=T7'S\g7'(0)

(We have u7'(0) = ¢™'(CV N J) and §7'(0) = ¢~ 'Q7(0). If S C u~'(0),
S = T-1'5\271(0), then

»Epsccevns and £ =F'5\07(0),

by Lemma 5.2. Then Lemma 5.1 implies & = @ and S = @.)
(v) There is @ > 0 such that [u~*du < oo for every positive measure p satisfying
w(I) < [I['? (see Lemma 2.2).
If t > 0, then

B(t) = P (tlog, g)

by (24), and the analyticity on {r > 0} follows from Corollary 4.1.

If, in addition, we assume (X), then the above argument shows that the condition (X)
is satisfied also for the zero set of g, and by Theorem 4.2 we have the analyticity of B(t)
on the whole real line. O
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6. Phase transition
6.1.

LEMMA. Let F be a subhyperbolic polynomial of degree d with connected, non-smooth
Julia set J and let C be a subset of Crit F N J. Then a non-empty set & C O%(C)
satisfying

T=F'S\C

exists if and only if there are points cy, . .., ¢ € C such that

Yk =d—1
j=1

and
F(ci))=---=Fcy,=a

for some fixed point a = Fa.

Proof. Denote n = #X. Since
¥ D F 'S\ CritF,

we have
n>dn— Z k(c) > dn —2(d — 1), (32)
FceX
which is possible only if n =1 or 2.

Suppose n = 2. Then we must have an equality in (32), which means that all critical
points ¢y, ..., c4—; of F are simple and Fc; € X. Let ¥ = {a,b}, and cy, ..., cy, = a,
Cotls---»Ca—1 —> b, v1 < vp. Observe that v; and vy =d — 1 — vy are < d, and that
FY C ©. If d is even, d = 2k, we then have vi =k — 1, v, =k, F(a) = a, F(b) = a;
that is

Cly vy Ck—1 —» da O
1 (f k > 1).
Cky--rCok—1 — b

It is easy to see that any such polynomial is conjugate to Py.

If d is even, a similar argument shows that F is conjugate to either P; or —P,. Since
we assume that the Julia set is not smooth, the case n = 2 is ruled out. The statement is
obvious for the remaining case n = 1. O

6.2.

COROLLARY. Let F be a subhyperbolic polynomial with connected, non-smooth Julia set.
Then the spectrum B(t) is real analytic unless F has a fixed point a € J and critical
points c1, . .., Cy Such that

Fe) == F(c)) =a
S k(ep)=d—1.

This result has the following consequences for polynomials of degrees 2, 3 and 4.
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If d = 2, then a polynomial has a phase transition only if it is conjugate to z> — 2.
If d = 3, then the only (non-smooth) case where we can have a phase transition is

c—»aq,
ie.
F(z) = (z—c)*(z—a) +a. (33)
Every polynomial of degree 3 is conjugate to a polynomial with coefficient zero at z2,
in which case we have a = —2c¢ in (33). It follows that F has a real analytic spectrum

unless it is conjugate to either z> 4 3z or some polynomial in the one-parameter family
F.(z) = (z+2¢)(z — ¢)* —2¢ = 22 — 3%z + 2(c — ©).
If d = 4, then we can have the phase transition only if
c—»aQ

(except for Chebychev’s case). Reasoning as above, we see that any such polynomial is
conjugate to an element of the family

F:(z) = (z+3c)(z —c¢)® — 3z

For polynomials of degree d > 5 there are more possibilities. For example, if d = 5,
then there are two families:
c-»aqQ,

and
c1,¢ »a® (a two-parameter family),

that we can suspect of a phase transition.
We are now going to analyse the phase-transition case.

6.3.

THEOREM. Let F be a subhyperbolic polynomial with connected, non-smooth Julia set.

Suppose that there are critical points c1, . .., ¢y and a fixed point a € J and such that
Fei=---=Fcy =a,

> k(e =d — 1.
j=1

Denote
g= [] le—e@,
ceCrit F
where
k(c) —1 ceCrit F\{ci,...,cn}

v(c) = k(c

© Q—l cefcr,...,cm},
and

k = min k(c;).
1<j<m
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Then the function t — P(tlogg) is real analytic, and

1+ (1) = max{P(tlogg), t log, (n/d)}, (34)

where | = |F'(a).

Proof. At least one of the points cy, ..., ¢, does not belong to the set
C={ceJNCritF : v(c) # 0},

and therefore

x COt0)
T =40.
{ S = Flx\C = ] (35)

Otherwise, by Lemma 6.1 we would have another set {c;y11, ..., ¢y} Of critical points
such that

m+l

D k() =d—1,

k+1

F(emy1) =+ = F(cmy1) = b = F(b).

Then ka:{ k(cj) = 2d — 2, which means that all critical points are simple, and

m =1=(d—1)/2. Itis easy to see that F is then conjugate to a Chebychev polynomial.

As in Theorem 5.3, this proves that the pressure function t — P(tlogg) is real
analytic and it remains to verify the formula (34). The case ¢ < 0 is easier, so we will
concentrate on positive ¢s. Since

1-1
m K
- k
[T ke = s [Te-or]

ceCrit F
[IF(Z) —al]l_i‘
— g —_— ,

lz — al
we have
1+ B(—t) = P(t0),
where
6 =logg+hoT —h,
and

1
h:(l——)loglgo—al.
K

Let A() denote the spectral radius of the Perron-Frobenius operator L, and let v; denote
the corresponding probability measure (see §3). By Lemma 3.3, for any interval of rank n
we have

"0 — 3 ()", (D).

Therefore,

o1
P(t0) =log, A + nli)xgo - log, X, (1),
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where

Xa®) = ) e M (D). (36)

rank /=n

To compute X,(t), we fix a small neighbourhood of the (finite) set ¢p~'a. It is clear
that the contribution to the sum (36) coming from the intervals which do not intersect
this neighbourhood is < 1. Let us estimate the contribution from the intervals that are
close to some point ¢, € ¢~ la.

Fix n and let J; denote the family of rankn intervals that intersect the d—*-
neighbourhood of ¢,. Define the intervals

0 ST (37)
by
I, = Ulej,, 1
LFuly =Ueqng, I o <k <n).
If T is one of the intervals (37) and I C I, then by Lemma 2.1,

|hj —hy| < const.

Z e "My (1) < Z e "My, (I).

ICnbhd(Z,) Ie(37)

Consequently,

Futhermore, if |I| < d~*, then
e (l) = M) ke SOn

A e @I

X

(see §1.2). We also have

')l <19 ()], (re=1+d7%),
_ dist(p(rigo), J)
- re—1
(ohn) |k (8o) — al
- Tk — 1

(Lemma 2.1) (d)k
= 7))

Therefore,
et = Zx(z)"‘ (%)kt
T1e(37) k=k,
py 17"
= max{l, [(2) A—(B:| },
and

P(t0) = max {logd A(2), tlog, g—} .
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Theorem 6.3 makes it possible to state some conditions for the phase transition in
terms of the multipliers of periodic points. Recall that for b € Fix F? we denote

n(b) = [(FP) (b)]'?.

6.4.
COROLLARY 1. A subhyperbolic polynomial with connected, non-smooth Julia set has a
phase transition if and only if there is a fixed point a and positive number § such that

bePerF, b#a= ub)<ula)—>_.

Proof. Suppose F has a phase transition. Then F satisfies the hypothesis of Theorem 6.3
and we can use the same notations. We have
dP(tlogg)
dt

wula)
log, R

t=00

i.e.

P(tlogg) <t (logd ,u;a) - 8)

for some & > 0 and all t > #,. This implies

t
A <d™% (#) , (@ =1,).

On the other hand, if b # a is a fixed point of F? and b = ¢(n), then

d7PH(FPY (D)F = gpe(n),

and
1/kp
Al) = ( Z max g,’cp>
rank I =kp
> (g, =d ™ ub)'.
Hence, w(b) < d~%u(a). The converse statement follows from Corollary 2.5. O

COROLLARY 2. Suppose F satisfies the hypothesis of Theorem 6.3. Then for the phase-
transition case, it is:

(1) necessary that w(a) > wu(b) for every fixed point b # a, and

(2) sufficient that ||g|l < n(a)/d.

COROLLARY 3. Let F be a subhyperbolic polynomial with connected, non-smooth Julia
set. Then
(1) for any a € Per F \ Fix F and any ¢ > 0, there is a periodic point b such that

w(d) > p(a) — e,
(2) foranya € Per F N J and any & > 0O, there is a periodic point b such that

u(b) < pla) +e.
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6.5. Cubic polynomials.

THEOREM. If F is a subhyperbolic polynomial of degree 3 with connected, non-smooth
Julia set, then B(t) is real analytic.

Proof. We know that the phase-transition case can occur only within the family
F.(z) = (z+2¢)(z — ¢)* = 2¢.
In this case the critical points are +c, the fixed points are
a=-2c, bp=c+1, b_=c—1,

and
c—»a—a.

The multipliers of the fixed points are
[F'(@)] =9lc|,
[F'(by)| = 3|1 £ 2c|.

By Corollary 2, it is sufficient to show that if the Julia set J of F, is connected, then
either
14+ 2c| > 3|cl*> or |1—=2¢|>3|c|>

If J is connected, then diam J < n (because the logarithmic capacity of J is one).
Since J contains the points a = —2¢ and

F2(—c) = 4c%(4c® — 3)% — 2c,

we have
diam J > 4|c)’|4c? — 3.

The assertion now follows from Figure 3 where the inner curve represents the locus
{e:lePlac® =31 =13,
and the outer curve is the boundary of the domain

{c: 14 2c| < 3|c|?).

|
6.6. An example in degree 4.
Claim. The polynomial
F(z) = (z—¢)*(z+3c) — 3¢
with Y
14+iv/2
c= —-+3’— (38)

is critically finite (hence, subhyperbolic with connected, non-smooth Julia set), and the
spectrum B(¢) has a phase-transition point.
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Proof. The polynomial F has two critical points: ¢; = ¢ and ¢; = —2¢, and the fixed
points are:

a def —3c and ¢ + 3\/I (three points).
We chose (38) to satisfy the equation F2c = 1+ ¢. Thus we have

cp »a,

cp—» 14+c¢0O,

and so F is critically finite.
To prove that we have a phase-transition case, we will apply Corollary 2 (see §6.4).

Since .
|F'(a)]
d

16

= 16|c]® = ,
Ic 35

and
llglloo = max |z + 2c|
zeJ

(see Theorem 6.3), we must show that
16
JCB (-—26‘, ST/_E) .
Denote x = z 4+ 2¢. Then
F@@)+2c=(x—-3c) x+c¢)—c,
and it is sufficient to show (since 16/3+/3 > 3) that
x| =34+¢, ¢6>0= |(x—3c)3(x+c)—c] >3+ 2e.
In fact, we have

|(x -3¢ (x +¢) —cl > lx] = 3lc]® l|x] — [e]]
3

1 1
> ‘3—}-8—3'-——- 34— —|>3+4+2¢
V3 V3
(1
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