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Symbolic Dynamics and Collet-Eckmann Conditions

Stanislav Smirnov

1 Introduction

In this paper, we prove that unicritical polynomials with metrically generic combina-

torics of the critical orbit satisfy Collet-Eckmann conditions. Here metrically generic

means except for a set of Hausdorff dimension zero, and combinatorics can be under-

stood in either of the following senses:Markov partition itineraries, kneading sequences,

external angles, or harmonic measure on the Mandelbrot set.

Particularly, except for a set of Hausdorff dimension zero of angles, all external

rays for the degree dMandelbrot set land at parameters c such that polynomial zd+ c is

Collet-Eckmann. This statement is in a sense the best possible, and it is much stronger

than saying that almost every c with respect to harmonic measure corresponds to a

Collet-Eckmann polynomial.

Some of the theorems canbe generalized to polynomialswithmany critical points

and rational functions.

1.1 Historical perspective

Theperspectivewe take in this paper is to search for properties of a typical nonhyperbolic

polynomial or rational function. Many nice properties of hyperbolic polynomials can be

generalized to various classes of “weakly hyperbolic” ones, for example, critically prepe-

riodic, Misiurewicz, Collet-Eckmann, etc. For polynomials from all classes mentioned

above, Julia sets enjoy regular geometry and have Hausdorff dimension strictly less

than 2 (see [5] , [10] , [25]). On the other hand, there are many nonhyperbolic polynomials
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with “bad” properties, and it makes sense to ask which kind of behavior (nice or bad) is

typical.

Of course, there are different ways to define the class of “good”rational functions.

We study rational functions satisfying the Collet-Eckmann condition and its variations

(see Section 1.3 for the definitions anddiscussion). Itmakes sense to study this particular

class, since such rational functions enjoy many nice properties (see [10], [11] , [23] , [25] ,

and [26]) and are typical in many senses. On the other hand, smaller classes of functions,

like Misiurewicz maps, turn out to be nontypical in the situations under consideration.

There are also different ways to interpret the word “typical.” One possible way is

to look at the metrically generic polynomials or rational functions. It was successfully

exploited in the following two cases.

Real quadratics

The theorem of M. Jakobson [14] states that there is a positive Lebesgue measure set of

real parameters c such that z2 + c admits an invariant measure absolutely continuous

with respect to Lebesgue measure on the real line. It is interesting that it was shown

that there are many nonhyperbolic polynomials by exhibiting a lot of them with nice

properties. Moreover, by a theorem ofM. Lyubich [18], there is no other way to do it, since

for Lebesgue almost every real c quadratic map z2 + c is either hyperbolic or stochastic

(i.e., like those in Jakobson’s theorem).

Later, M. Benedicks and L. Carleson extended results of M. Jakobson, proving in

[1] , [2] that there is a positive Lebesgue measure set of real c such that z2+c satisfies the

Collet-Eckmann condition. Note that parameters c corresponding to Misiurewicz maps

have zero length by a result of D. Sands [28].

Rational functions

A parallel result for the rational functions is due to M. Rees [27], who showed that

there is a positive Lebesgue measure set of rational functions (for a fixed degree, we

can parameterize them by C
N), admitting an invariant measure absolutely continuous

with respect to Lebesgue area on Ĉ, and whose Julia set is the whole complex sphere

Ĉ. It seems plausible that a positive Lebesgue measure set of those rational functions

actually satisfies the Collet-Eckmann condition.

Another possible way is to look at topologically generic polynomials.

Complex quadratics

In [32], M. Shishikura showed that for topologically generic c in the boundary of the
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Mandelbrot set, the Hausdorff dimension of the Julia set Jz2+c is 2, and he deduced that

the Hausdorff dimension of the boundary of the Mandelbrot set is 2 as well.

This shows some difficulties in establishing analogues of Jakobson’s theorem

for complex quadratics: It is not clear what the canonical Hausdorff measure on the

boundary of the Mandelbrot set is, and there appears to be many “bad” parameters c.

Our original idea was to establish an analogue of Jakobson’s result for complex

quadratics with respect to harmonic measure on the boundary of the Mandelbrot set.

Harmonic measure in this context plays a special role, since a Riemann uniformization

map has dynamical meaning (see [4]). Roughly speaking, it measures angles of external

rays landing on theMandelbrot set, and these angles carry information about topological

structure of the corresponding Julia sets. These investigations resulted in Theorem 4,

and later the project expanded to include an investigation of rational functions such that

encoding of the critical orbit is generic with respect to some symbolic dynamics.

1.2 Results

Consider the space Σp of all one-sided p-symbol sequences x = x1x2 , . . . , xj ∈ {0, . . . , p−1}

equipped with canonical shift dynamics T : x1x2 · · · �→ x2x3 . . . . We denote by n(x, y) the

minimal number n such that xn �= yn (if no such number exists, we set n(x, y) := ∞),

then d(x, y) := p−n(x,y) is the canonical p-adic metric on Σp.

One method of studying dynamics F on the Julia set is to somehow (semi)conj-

ugate it to shift dynamics and thus introduce symbolic dynamics on the Julia set. We

show that three canonical constructions of such conjugation polynomials with a metri-

cally generic itinerary of the critical point are Collet-Eckmann (see 1.3 for the definition).

Namely, we consider symbolic dynamics arising from Markov partitions, kneading se-

quences, and the Riemann uniformization map. Note that all unicritical polynomials

with disconnected Julia set are hyperbolic (and hence, Collet-Eckmann), and therefore

connectedness conditions can be dropped from the theorems below.

We say that a polynomial zd + c has critical symbolic dynamics σ if there exists

a Markov partition (similar to the first level of Yoccoz puzzle, see Section 3 for details)

such that itinerary of the critical orbit coincides with the sequence σ.

Theorem 1 (Markov partitions). Let Eσ be the set of symbolic sequences σ such that

there exists a non-Collet-Eckmann polynomial zd+cwith connected Julia set and critical

symbolic dynamics σ. Then the Hausdorff dimension of Eσ is equal to zero. �

Kneading sequence is the itinerary of the critical orbit with respect to the parti-

tion of the Julia set by the critical point (see Section 2 for details).
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Theorem 2 (Kneading sequences). Let Eκ be the set of kneading sequences κ such that

there exists a non-Collet-Eckmann polynomial zd+cwith connected Julia set and knead-

ing sequence κ. Then the Hausdorff dimension of Eκ is equal to zero. �

There is an easily described map, carrying an external angle of the critical value

(see Section 4) to the corresponding kneading sequence. Its (multi-valued) inverse does

not increase Hausdorff dimensions (see Proposition 1), and hence we arrive at the fol-

lowing theorem.

Theorem 3 (External angles). Let Eθ be the set of angles θ such that there exists a non-

Collet-Eckmann polynomial zd + c with connected Julia set and external ray with an

angle θ landing at the critical value c. Then the Hausdorff dimension of Eθ is equal to

zero. �

LetMd denote the Mandelbrot set (locus of connectivity, i.e., the set of all cwith

a Julia set of zd + c connected) for the family zd + c. There is an intuitive principle,

according to which the angle of a (dynamical plane) external ray landing at the critical

value c in the Julia set coincides with the angle of a (parameter plane) external ray

landing at the point c in the Mandelbrot set. It can be made precise in many situations,

and in Section 4 we show that it can be made rigorous enough to conclude the following.

Theorem 4 (Mandelbrot set). Let EM be the set of angles θ such that a corresponding

external ray Rθ does not land at a Collet-Eckmann point c ∈ Md (i.e., corresponding to

a Collet-Eckmann polynomial zd + c). Then Hausdorff dimension of EM is equal to zero.

�

The intuitive meaning of this theorem is that looking at the Mandelbrot set from

outside, one sees only Collet-Eckmann parameters. This statement is stronger than say-

ing that almost all with respect to harmonic measure points on the boundary of the

Mandelbrot set are Collet-Eckmann. (A similar theorem is also proven by J. Graczyk and

G. Świa̧tek by different methods in [12]. Earlier, J. Graczyk, G. Świa̧tek, and the author

showed that almost all points satisfy the weaker summability condition.) Our theorem

is in a sense the best possible: infinitely renormalizable polynomials cannot satisfy the

Collet-Eckmann condition by [11], and it was shown in [19] that the corresponding set

of angles has positive logarithmic capacity (and even positive Hausdorff measure with

gauge function | log r|−ω for ω ∈ (1, log5/ log4)).
Also note that in all the models under consideration, Misiurewicz (i.e., critically

nonrecurrent) polynomials are not generic, which is easy to see since the corresponding

sequences are also nonrecurrent (i.e., someblock of digits appears only in the beginning).

Remark 1 (Multicritical case). We abstain from working with multicritical polynomials
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and rational functions in order to obtain more elegant formulations of our theorems.

However, the same methods would prove the analogues of Theorems 1 and 2 in the mul-

ticritical case as well.

Roughly speaking, we can show that there is a set E of symbolic sequences of

Hausdorff dimension zero, such that if there is a partition of a Julia set by repelling peri-

odic points, critical points, and finitely many of their preimages, and the corresponding

rational function fails the topological Collet-Eckmann condition, then itinerary of at

least one of the critical points should belong to E.

1.3 Variations of the Collet-Eckmann condition

The classical Collet-Eckmann condition asserts that expansion on the critical orbits

grows exponentially.

Definition 1 (CE). We say that a rational function satisfies the Collet-Eckmann condition

if there exist constants K,Q > 1 and C > 0 such that for every positive integer n and

every critical point c belonging or accumulating to the Julia set, we have

∣∣(Fn) ′
(FKc)

∣∣ ≥ CQn.

We mostly work with the following related definition, which involves only topo-

logical (not metrical) considerations and repeats one in Section 4 of [24]. Denote by

Compa F
−jB the component of connectivity of the preimage F−jB containing the point a,

and denote by Crit the set of the critical points of F.

Definition 2 (Topological Collet-Eckmann condition). We say that a rational function

satisfies the topological Collet-Eckmann condition (TCE), if for some P > 1, there ex-

istM > 0 and r > 0 such that for every x ∈ J, there is a sequence of increasing integers

{nj} with nj ≤ Pj and

#
{
i : 0 ≤ i < nj,CompFi(x) F

−nj−iB
(
Fnj(x), r

)
intersects Crit

} ≤ M.

This condition is also called finite criticality, and it means that for large (i.e.,

≥ 1/P) proportion of the iterates Fi(x), a ball of the radius r,when pulled back along the

corresponding branch of F−i, hits critical points at most M times. Sometimes (e.g., in

[26]), it is formulated by requiring a fixed proportion of times i to be “good,” that is, to

have criticality bounded byM.

In [25], it is shown that the Collet-Eckmann condition always implies TCE, and

Julia sets of TCE rational functions enjoy nice geometry. Furthermore, for unicritical
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polynomials, TCE and Collet-Eckmann conditions are equivalent, as was shown by

F. Przytycki in [24]. But it is not the case for multicritical ones (see [26]).

2 Kneading sequences

When the Julia set J of a polynomial F(z) = zd+ cwith no attracting or indifferent cycles

is connected and locally connected, there is an external ray landing at the critical value

c (consult Section 4 for the definition). A priori there can be several of them, generating

different kneading sequences,which all correspond to our polynomial. Preimages of this

ray are d external rays landing at the critical point 0 and cutting the Julia set (without 0)

in d “kneading components”K1 , K2 , . . . , Kd. For a point x ∈ J, the kneading sequence κ(x)

is defined as the itinerary of the orbit of x with respect to this partition.

We want to be able to work with non-locally connected Julia sets, so we gen-

eralize the definition above, employing terminology of fibers, as defined in [30]. Con-

sider a polynomial F(z) = zd + c with no (super)attracting or indifferent cycles and

connected Julia set. Fiber of a point a ∈ J is the union of all points in J that cannot be

separated from a by external rays landing at periodic or preperiodic points. (Note that

in our case, all periodic points are repelling and there is only one Fatou component.)

Denote by G the fiber of the critical point 0. The Julia set J has d-fold rotational symme-

try around 0, and removing G from J splits the latter in components of connectivity in

a symmetric way. Moreover, any point x ∈ J \ G and its (d − 1)-symmetric counterparts

belong to different components. Hence, we can construct d rotationally symmetric dis-

joint kneading components K1 , K2 , . . . , Kd that are closed inside J \G and whose union is

J \G.

Then for every x ∈ J, we can write the itinerary κ(x) = κF(x) ∈ Σd, where nth

term is equal to i if and only if Fn(x) ∈ Ki. There is a possibility (realized only for

points in the preimages of G) that one of the iterates of x is inside G (or coincides

with 0 in the locally connected situation), and then we just put an arbitrary digit in the

corresponding position of x (traditionally the symbol ∗ is written)—it does not affect our
reasoning, since for any of the exceptional x ’s, it happens only once. In fact, otherwise

Gwould be periodic (images of fibers are fibers, and intersecting fibers coincide), which

cannot happen since by [30 , Lemma 3.8], the polynomial F would have an indifferent or

(super)attracting cycle in this case.

The sequence κ(F) := κF(0) is called the kneading sequence of the polynomial F. (A

priori it depends on the choice of the partition, but this does not affect our statements.)

Note also that for a fixed polynomial F, the kneading map κ : x �→ κF(x) conjugates

dynamics F on the Julia set with the shift dynamics T on Σd: κ(F(z)) = T(κ(z)).
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We do not consider polynomials Fwith attracting or indifferent cycles so that the

critical point belongs to the Julia set, and our definition of the kneading sequence works.

Nevertheless, there is a logical way to define the kneading sequence for such polynomials

as well, but such kneading sequences are periodic (see the discussion in Section 4). The

set of periodic sequences is countable and of Hausdorff dimension zero, so it does not

affect our statements.

Proof of Theorem 2. The proof has two parts: First, we show that if F fails the TCE

condition for some P > 1 (with any M > 0, r > 0), then any kneading sequence of

F satisfies the strongly recurrent condition (SR). In the second part of the proof, we

estimate the size of the set of SR sequences in Σd.

We say that u = u1u2 · · · ∈ Σd is SR if the proportion of u1 · · ·uN that duplicates

long beginnings of u (with the exception of a rare sequence of digits) can be arbitrarily

close to 1 as N grows, namely, if for every D > 0 there is a D-rare set R ⊂ N such that

limsup
n→∞

# {duplicating i : 0 < i ≤ n} /n = 1.

Here, for a fixed n, the number i is called duplicating if for some l < i and l ′ ≥ D with

i ∈ (l, l+ l ′], the digits of u in positions (l+ 1), (l+ 2), . . . , (l+ l ′) duplicate first l ′ digits
of sequence u with the possible exception of positions in the D-rare set R. We say that

a set R is D-rare if for every j ∈ N, we have #R ∩ [j, j+D] ≤ 2.

Part 1: Non-TCE kneading sequences satisfy SR

The set of periodic or eventually periodic kneading sequences has zero Hausdorff di-

mension since there are only countably many of them; thus, we can exclude them from

consideration. Moreover, periodic kneading sequences obviously satisfy SR and if κ(F)

is eventually periodic, but not periodic, then the corresponding polynomial F is non-

recurrent and hence TCE. Therefore, we can assume that κ(F) is not eventually periodic.

In particular, this means that G is wandering (i.e., not periodic or eventually periodic).

First, we show that if orbits of two points are close, then so are their itineraries.

Namely, we prove the following lemma.

Lemma 2.1. Let F be a polynomial as above. For every L > 0, there is r > 0 such that

if points x, y ∈ J belong to one component of connectivity of F−n(Br) for some ball Br

of radius r, then first n digits of their itineraries coincide except for a sequence {kj} of

positions with kj+1 − kj > L. �

Remark 2. If the Julia set is locally connected, this lemma is trivial modulo backward

Lyapunov stability,which holds by [17 , Corollary 1].
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Proof. First consider L iterates of the critical point: {Fj(0)}Lj=0 . We assume that fiber G of

the critical point is wandering; therefore, these iterates belong to different fibers and we

can separate them by a finite collection Γ of external rays landing at preperiodic points.

Adding several more rays, we can assume Γ to be forward-invariant. Note that Γ depends

on L, and all further parameters, including r, depend on Γ .

By our construction intersection of the closures of two different kneading com-

ponents, Ki, Kj lies inside G, and Γ does not intersect the latter set. Hence, if δ > 0 is

the distance from G to Γ, then δ-neighborhood of any point in Γ intersects at most one

kneading component.

Next we choose r so small that for any ball Br intersecting the Julia set, if for

some positive integer l a component of connectivity f−l(Br) of its preimage intersects Γ,

then diam(f−l(Br)) < δ. To do so, denote by Γ ′ the union of (repelling) cycles in Γ, and

note that a ball Br, one of whose preimages intersects Γ, also must intersect Γ . There are

finitely many branches of Fi mapping points of Γ \ Γ ′ into Γ ′, and we can choose r ′ so

small that pulling back Br ′ , intersecting Γ ′ along one of these branches produces a set of

diameter less than δ. Without loss of generality (consider an iterate of F), all cycles in Γ ′

are fixed points. Then we can choose r ′′ < r ′ so small that pulling back by a branch of F,

preserving fixed points a ∈ Γ ′ decreases the diameter of the ball Br ′′(a). Finally, choose

r < r ′′ so small that any ball of radius r intersecting Γ and the Julia set must be within

distance r from the preperiodic points in Γ . This r is clearly the desired one.

Now suppose that the lemma fails for this choice of r, some ball Br, two points

x, y ∈ F−n(Br), and positions i, jwith j < i < j+L. Then Fi−n(Br)must intersect Γ and the

Julia set, hence its diameter is smaller than δ, it intersects only one kneading component,

and ith positions of the itineraries of x and y coincide, thus proving the lemma. �

Now we show that if a polynomial F fails TCE, its kneading sequence is SR. To

do so, we must prove the following lemma.

Lemma 2.2. For every non-TCE polynomial F with connected Julia set, and arbitrary

D > 0, τ < 1, there are time n ≥ D and a D-rare set R ⊂ N so that for the kneading

sequence κ(F),

# {duplicating i : 0 < i ≤ n} > τn.

Note that we actually obtain arbitrarily big n. (Applying lemma with larger and

larger D 
 D0 , we get arbitrarily large n ≥ D 
 D0 .) �

Proof. To prove the lemma, fix a polynomial Fwith connected Julia set (failingTCE with

a fixed P > 1) and constants D > 0, τ < 1.
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Choose r > 0 according to the Lemma 2.1 applied with L = 2D and M > 2D so

large that (1− τ)(M/2)((P − 1)/P) > 1. Since F fails TCE (with parameters P, M, r), there

exist x ∈ J and N > 0 such that at least ((P − 1)/P)N integers l ∈ [1,N] satisfy

#
{
i : 0 ≤ i < l,CompFi(x) F

i−lB
(
Fl(x), r

) � 0
}
> M.

For every j ≤ N, define j ′ as the largest number j ′ ≤ N, such that

CompFj(x) F
j−j ′B

(
Fj

′
(x), r

) � 0.

If such a number exists, we add the interval [j, j ′] to the collection I.

For every j, there is at most one interval I with such a beginning, and the fact

that F fails TCE as specified above means that at least ((P − 1)/P)N integers in [1,N] are

covered by the collection I at leastM times. Removing all intervals of length less than

D from I, we obtain the new collection I ′, which covers at least ((P − 1)/P)N integers in

[1,N] at least (M−D) > M/2 times, and therefore,

∑
I∈I ′

|I| ≥ P − 1

P
N
M

2
>

N

(1− τ)
, (1)

where |I| denotes the number of integers in I.

Note that for every interval I = [i, i ′] ∈ I ′, we can apply Lemma 2.1 to points

Fi(x) and 0, deducing that first (i ′ − i) digits in the itinerary of 0 duplicate digits in the

(i + 1), (i + 2), . . . , i ′th positions of the itinerary of x, except for a set SI. Note that the

difference of any two numbers in the latter set is bigger than 2D by the choice of L and

Lemma 2.1. It follows that for any two intervals [i, i ′], the [j, j ′] ∈ I ′ part of the itinerary

of 0 starting at |j− i| duplicates the beginning of the same itinerary, except for positions

in SI ∩ SJ.

Therefore, if there is an interval I = [i, i ′] ∈ I ′, such that at least τ|I| integers in

I are covered by further right intervals in I ′ (which is canonically ordered by left ends),

then we can finish the first part of the proof. In fact, from such a cover, we can choose a

subcover J that covers every point at most twice (by excluding redundant intervals).We

take (i ′ − i) to be the desired n. The set R can then be defined as the union ∪J∈JSJ ∪ SI.

The set R is D-rare, since the difference of any two numbers in any set SJ is bigger than

2D, as was noted above.

Suppose that this is not so, and for every I ∈ I ′, atmost the τ|I| part of it is covered

by further right intervals. But if some l ∈ [1,N] is covered bym(l) intervals from I ′, then

for only one of them (the rightmost one), this number l is not covered by further right
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intervals. So we arrive at

∑
I∈I ′

|I| =

N∑
l=1

m(l) =

N∑
l=1

(
m(l) − 1

)
+N

≤
∑
I∈I ′
# {i ∈ I : it is covered by an interval further right of I}+N

≤
∑
I∈I ′

τ|I|+N,

and we deduce that (1 − τ)
∑

I∈I ′ |I| ≤ N. The latter contradicts (1), thus completing the

first part of the proof. �

Part 2: SR kneading sequences have zero Hausdorff dimension

In this part, we forget about complex dynamics and estimate the Hausdorff dimension

of the (combinatorially described) set of SR kneading sequences.

Denote by En(τ,D) the set of all u ∈ Σd such that there exists a D-rare set R and

# {duplicating i : 0 < i ≤ n} ≥ τn, (2)

as in the definition of SR. Clearly,

SR =
⋂

τ<1,D>0

limsup
n→∞

En(τ,D).

For τ < 1, D > 0, define δ = δ(τ,D) by

9
logD
D
+ (1− τ) logd = δ

logd
2

.

It is easy to see that limτ→1,D→∞ δ(τ,D) = 0, and hence it is sufficient to prove the

following lemma.

Lemma 2.3. For any τ < 1, D > 0, we have HD(limsupn→∞ En(τ,D)) ≤ δ(τ,D). �

Proof. To prove the lemma, fix τ < 1 and D > 0, and denote δ := δ(τ,D), En := En(τ,D).

First, study the size of En for some particular n. The inequality (2) means that we can

choose a collection I of intervals [j, j ′] ⊂ [1, n] of length greater than D, which cover at

least τn integers in [1, n]. Also for i ∈ [j, j ′], ith and (i− j)th positions in u coincide, unless
i belongs to a rare set R.

First, we estimate the number of cylinders v = v1 · · · vn of length n needed to

cover En.
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Take some element u satisfying the condition above, and choose (by the standard

Besikovitch covering argument) from I a nice subcollection I ′ having the same property

and such that no integer is coveredmore than twice (e.g.,no interval from I ′ being covered

by a union of others is sufficient). Then at most two beginnings and at most two ends

of intervals from I ′ belong to any interval [i, i + D). (If three intervals of lengths more

thanD have beginnings in the same interval of lengthD, one of them is contained in the

union of two others.) Observe that choosing beginnings and ends uniquely determines

I ′ (easy induction shows that jth beginning from the left and jth end from the left must

correspond to the same interval, otherwise there are two intervals with I ⊂ J), and

there are less than D4 possibilities to choose at most two beginnings and at most two

ends in each of the n/D + 1 intervals [jD, jD + D) for j ∈ [0, n/D). Thus, there are at
most (D4)n/D+1 < exp(n5 logD/D) ways to choose I ′. Also, in every interval [i, i + D),

there are at most 2 numbers of the rare set R, so there are less than (D + 1)2n/D+1 <

exp(n4 logD/D) ways to choose R. Hence, there are at most exp(n9 logD/D) ways to

choose I ′ and R.

Once the nice collection I ′ and rare set R are chosen, the sequence u duplicates

itself so extensively that (1 − τ − (1/D))n digits fully determine the first n digits of u.

(In fact, for any integer k covered by I ′, but not by R, there is an integer j = j(k, I ′,R) < k

independent of u such that uj = uk.) Thus, there are at most

exp

(
n9

logD
D

)
d(1−τ)n = exp

(
n

(
9
logD
D
+ (1− τ) logd

))

differentways to choose the firstn digits ofu. Each of these has a corresponding cylinder

of diameter exp(−n logd).

By the choice of δ,we conclude that it is possible to cover En by a collection {Cn
j }j

of cylinders with

∑
j

diam
(
Cn
j

)δ
< exp

(
n

(
9
logD
D
+ (1− τ) logd

))
· exp(−δn logd)

= exp

(
−δ

logd
2

n

)
,

and a union ∪n≥mEn by a collection {Cn
j }n≥m,j with

∑
n≥m,j

diam(Cn
j )

δ <
∑
n≥m

exp

(
−δ

logd
2

n

)
≤ const exp

(
−δ

logd
2

m

)
.

The desired conclusion HD(limsupm→∞ Em) ≤ δ readily follows. �
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3 Markov partitions

In this section, we outline the proof of the Theorem 1. The proof is very similar to that

of Theorem 2, so we skip many details.

Markov partitions

Suppose that the Julia set except for a set X is covered by a union of disjoint, open, con-

nected domains Aj, 1 ≤ j ≤ p, so that for every j, every component of connectivity of the

preimage F−1Aj is inside one of the domains Al.We consider onlyMarkov partitions of J

when X is a finite set containing only repelling cycles or their preimages. Constructions

of the Yoccoz puzzle (see [21], [13]), and the fixed point portraits (see [8] , [9]) start with

such a partition.

Then every point in the Julia set, except countably many (X and its preimages),

can be encoded by a sequence from Σp. Namely,we can define amapφ : J\∪j≥0F
−jX → Σp

by z �→ x1x2 . . . ,where xj = kwhen Fj(z) ∈ Ak. Clearly,when so constructed,φ conjugates

dynamics F to shift dynamics T .

The proof of Theorem 1 (like Theorem 2) has two steps: First, we show that if f

fails the TCE condition, then the symbolic sequence φ(0) satisfies the modified strongly

recurrent condition (SR’). In the second part of the proof, we estimate the size of the set

of SR’ parameters.

We say that u ∈ Σp is SR’ if the proportion of u1 · · ·uN that duplicates long

beginnings of u or one of a few periodic sequences can be arbitrarily close to 1 as N

grows, namely, if there exist T < ∞ periodic sequences v1 , . . . , vT , such that for any

D > 0,

limsup
n→∞

# {duplicating i : 0 < i ≤ n} /n = 1.

Here the number i is called duplicating if for some l < i and l ′ ≥ D with i ∈ (l, l + l ′],
the digits of u in positions (l+ 1), (l+ 2), . . . , (l+ l ′) duplicate first l ′ digits of one of the

sequences u, v1 , . . . , vT .

Part 1: Non-TCE parameters satisfy SR’

Near repelling points in X dynamics F just permutesAj, so there exist periodic sequences

v1 , . . . , vT in Σp such that while the orbit of a point z stays in some small R-neighborhood

XR of X, it visits Aj in the corresponding order.

Taking R to be small, we can assume that any component of F−1XR, which is

disjoint from X, is contained in Aj for some j, and that branch of F−1 on XR, which

preserves X, is contracting.



Symbolic Dynamics and Collet-Eckmann Conditions 345

Take r small enough so that z, z ′ ∈ J, |z− z ′| < r implies that z and z ′ either belong

with their r-neighborhood to the same domain Aj for some j ∈ [1, p], or are both inside
XR. Furthermore, we take r so small that if a point z gets inside r-neighborhood of X, its

images under D ′ iterations remain inside XR.

After that, we can follow the proof of Theorem 2 once the following analog of

Lemma 2.1 is proven.

Lemma 3.1. If |Fjx − Fjy| < r and x, y belong to the same component of connectivity of

F−jBr(x), then there exists i ≤ j such that first i digits of the sequences φ(x) and φ(y)

coincide, and their digits in the positions (i+ 1), . . . , j duplicate first (j− i)-digits of the

periodic sequences vA and vB correspondingly for some A,B ∈ [1, T ]. �

Proof. Take the maximal i ≤ j so that Fi(x), Fi(y) do not belong to the r-neighborhood of

X. Then the second part of the statement is clear. To prove the first part, note that the

component of connectivity of F−1XR, containing Fi(x), contains also the corresponding

component of Fi−jBr(f
j(x)) and is inside Al for some l. Pulling back, we obtain the first

claim. �

Part 2: SR’ parameters have zero Hausdorff dimension

If sequences v1 , . . . , vT are fixed, we can repeat the analogous arguments from the proof

of Theorem 2 and obtain that the Hausdorff dimension of the set of SR’ elements of Σp

with such periodic sequences is zero. But there are only countably many different ways

to choose a positive integer T and T periodic sequences v1 , . . . , vT , and zero dimension

is preserved under countable unions, hence the Hausdorff dimension of the set of SR’

sequences is zero.

4 External angles

For a connected Julia set and an angle θ, we introduce an external ray (or dynamical

ray in order to distinguish from parameter rays, defined below) Rθ,which is Green’s line

starting at infinity with the angle θ, or, equivalently, the image of the radius {reiθ : 0 <

r < 1} under the Riemann uniformization map φ from the unit disc to the domain of

attraction to infinity A∞ . The latter is chosen so that it conjugates dynamics z �→ zd on

the unit disc to F onA∞ . Note that whereverφ extends to the boundary, it semiconjugates
z �→ zd on the unit circle to F on the Julia set.

Similarly, we define external rays in the parameter space, or simply parameter

rays, as Green’s lines for the set Md, the latter being the set of all c ∈ C for which the

Julia set of zd + c is connected.
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4.1 From kneading to angles

Consider the unit circle (which we parameterize by angles and identify with the real line

modulo 1) with dynamics T : θ �→ dθ. Points (θ + j)/d, j = 1, . . . , d split the circle in d

arcs. Hence, we can prescribe to an angle θ its kneading sequence Ψ(θ) ∈ Σd, which is

the itinerary of the orbit {Tn(θ)}∞n=1 . If Tn(θ) coincides with one of the separation points,
we write ∗ in the corresponding position.The latter can happen only for countably many
θ, which we can exclude from consideration without affecting dimension estimates.

Suppose that critical value c of a polynomial F(z) = zd+ c is in the accumulation

set of an external ray Rθ (or,more generally, if Rθ accumulates inside the fiber of c). Then

for any n, its image Fn(c) is in the accumulation set of the external ray RTkθ. Removing

from the plane d external rays with angles (θ+ j)/d, j = 1, . . . , d and fiber of the critical

point 0 (which contains accumulation sets of those rays, see [30]) splits the plane into

d domains in a d-fold, rotationally symmetric way, and it is easy to see that for such a

choice of the kneading components, we obtain κ(F) = κF(0) = Ψ(θ). Let Eθ ⊂ T denote

the set of angles θ such that there is a non-TCE polynomial for which an external ray

Rθ accumulates at the critical value. By Theorem 2, the set Ψ(Eθ) ⊂ Σd has Hausdorff

dimension zero. Then Theorem 3 follows from the following proposition.

Proposition 1. Pulling back by the map Ψ : T → Σd does not increase the Hausdorff

dimension. �

Proof. If we increase θ ∈ [0, 1], then it is easy to see that points k/(dn − 1), k ∈ Z are

precisely the places where the nth digit in the sequence Ψ(θ) ∈ Σd changes, following the

periodic pattern 0, 1, . . . , (d− 1), 0, 1, . . . , and that this digit is equal to (dn − 1)θ modd.

Let σ be an element of Σd and let Sn denote a cylinder of depth n in Σd, which contains

sequences, such that their first n digits coincide with those of σ. Denote by I(n) the

collection (and sometimes the union) of intervals in Ψ−1(Sn). The diameter of Sn (in the

d-adic metric on Σd) is 1/dn, so we need to prove that for any positive α and β, we have

∑
I∈I(n)

|I|α ≤ constd−αn+βn.

But intervals in I(n) have length at most 1/(dn − 1), so it is sufficient to show that for

any positive ε and γ, we have

∑
I∈I(n)

|I|ε ≤ constdγn. (3)

The latter follows from the fact that for any ε > 0 and positive integer m, we have for
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k > k0 = const(ε,m),

∑
I∈I(k+m)

|I|ε ≤ 2m
∑

I∈I(k)

|I|ε. (4)

Indeed, repeatedly applying (4), by induction, we obtain

∑
I∈I(n)

|I|ε ≤ const(2m)n/m = constdn logd(2m)/m ,

and (3) follows if m is large enough to satisfy γ ≥ logd(2m)/m.

To prove (4), first consider an easier model map Ψ̃. Change the mesh of the par-

titions from 1/(dn− 1) to 1/dn. Namely, take some sequence {cn} , consider the partition

given by points (cn + k)/dn, and define a map Ψ̃ : [0, 1]→ Σd so that the nth digit in the

sequence Ψ̃(θ) ∈ Σd is equal to (dnθ−cn) modd. For the model map,we can easily see by

induction that Ψ̃−1(Sn) mod1/dn covers univalently interval [0, 1/dn). It also consists of

at most (n+ 1) components, because there are only n partition points modulo 1/dn, and

these points are exactly
{
cj/d

j
}
. Therefore, Ĩ(n) := Ψ̃−1(Sn) consists of at most (n + 1)

intervals with total length 1/dn (and thus inequality (3) for the model map is trivial).

Returning to the original map Ψ, let k0 be so large that 8dm+1−k0 ε < m−1. First,

fix k > k0 and an interval J ∈ I(k).We view themapΨ as a perturbation of Ψ̃with properly

chosen parameters (depending on J). Denote by a the left endpoint of J and let θn be the

smallest number j/(dk − 1) that is bigger than a. Take cn := θn. Then the partitions of

depth n for Ψ̃ and Ψ coincide at θn and hence do not differ much inside J. Namely, for

n < k, partitions for Ψ and Ψ̃would coincide inside J,while for n ≥ k any partition point

for Ψ inside J and its counterpart for Ψ̃ would differ by at most

(
1

dn − 1
−

1

dn

)
|J|/d−n < 2d−2k .

Separate intervals from J ∩ I(k + m) into two kinds: “long,” that is, of length

> 4d−2k , and “short,” that is, of length≤ 4d−2k . Since partition points of Ψ and Ψ̃ inside J

differ by at most 2d−2k , every long interval corresponds to some interval from J∩ Ĩ(k+m)

(and intersects it). By rescaling, we see that J ∩ Ĩ(k + m) consists of at most (m + 1)

intervals. Thus, there are at most (m + 1) long intervals, and they are contained in J, so

we can write

∑
longI

|I|ε ≤ (m+ 1)|J|ε.

Intervals in I(k+m) can occur at most one per interval of length 1/(dk+m−1−1), so there
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can be at most |J|(dk+m−1 − 1) < |J|dk+m of them inside J. Noting that |J| < 2d1−k , we can

write

∑
shortI

|I|ε ≤ (
4d−2k

)ε
|J|dm+k = 4dm−kε|J|ε

(
dk|J|

)1−ε ≤ 8dm+1−kε |J|ε.

Combining these observations and recalling that k > k0 , we obtain the estimate

∑
I∈I(k+m), I⊂J

|I|ε ≤ (m+ 1)|J|ε + 8dm+1−kε |J|ε < 2m|J|ε.

When summed over all J ∈ I(k), this implies (4) and hence the proposition. �

A different proof of this proposition is given in [3].

4.2 From dynamical plane to parameter space

Only a parameter ray such that the kneading sequence of its angle is periodic can ac-

cumulate at the point c ∈ Md with Julia set zd + c having an indifferent cycle (see [16 ,

Section 5], [29 , Lemma 3.9], and [15 ,Theorem 14.4]). Since there are only countably many

such kneading sequences, the corresponding set of angles has Hausdorff dimension zero

by Proposition 1. See also [6] for a neat computation, explicitly showing that cardiod (the

set of parameters c ∈ M2 with z2 + c having an indifferent fixed point) has harmonic

measure zero.

Now we can exclude Julia sets with indifferent or (super)attracting cycles (the

latter do not matter, since corresponding parameters are not on the boundary ofMd any-

way), and [31 , Lemma 2.1] implies that if a parameter ray Rθ accumulates in the fiber of

point c, then a dynamical ray Rθ for the Julia set zd+c also accumulates in the fiber of the

critical value c. By Beurling’s theorem, nearly every (i.e., except for logarithmic capacity

zero, and hence except for Hausdorff dimension zero (see [22 ,Theorem 9.19])), parameter

ray lands, so combining this observation with Theorem 3, we arrive at Theorem 4.

In the quadratic case, we can give an alternative proof. C. McMullen shows in

[20 , Theorem 8.4] that every infinitely renormalizable polynomial is infinitely simply

renormalizable. Every simply renormalizable polynomial can be obtained by tuning, as

described in [7]. There is also a tuning procedure for angles, formally defined for their

dyadic expansions and described in [6]. If z2 + c ′ is obtained by tuning from z2 + c, apart

from countably many exceptions (some rays landing at Misiurewicz points), angles of

parameter rays landing at c ′ can be obtained by tuning from those of rays landing at

c. We can call an angle renormalizable if it can be obtained by tuning. Then, except for
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countably many possibilities, angles of all rays landing at points cwith infinitely renor-

malizable z2 +c are infinitely renormalizable. As A. Manning computed in [19], the set of

infinitely renormalizable angles has Hausdorff dimension zero, and hence so does the set

of angles of parameter rays landing at cwith z2+c infinitely renormalizable. Combining

the observations abovewith Beurling’s theorem,we deduce that except for a set of angles

of Hausdorff dimension zero, all parameter rays land at points corresponding to finitely

renormalizable quadratic polynomials without indifferent cycles. But J.-C. Yoccoz has

shown (see [13] and [21]), that for those, the Julia set is locally connected, and external

rays with the same angles land at the point c both in the Julia set and on the boundary

of the Mandelbrot set. Invoking Theorem 3 completes the proof. �
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