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Abstract It is widely believed that the celebrated 2D Ising model at criti-
cality has a universal and conformally invariant scaling limit, which is used
in deriving many of its properties. However, no mathematical proof has ever
been given, and even physics arguments support (a priori weaker) Möbius in-
variance. We introduce discrete holomorphic fermions for the 2D Ising model
at criticality on a large family of planar graphs. We show that on bounded
domains with appropriate boundary conditions, those have universal and con-
formally invariant scaling limits, thus proving the universality and conformal
invariance conjectures.
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1 Introduction

1.1 Universality and conformal invariance in the Ising model

1.1.1 Historical background

The celebrated Lenz-Ising model is one of the simplest systems exhibiting
an order–disorder transition. It was introduced by Lenz in [32], and his stu-
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dent Ising proved [19] in his PhD thesis the absence of phase transition in
dimension one, wrongly conjecturing the same picture in higher dimensions.
This belief was widely shared, and motivated Heisenberg to introduce his
model [17]. However, some years later Peierls [38] used estimates on the
length of interfaces between spin clusters to disprove the conjecture, showing
a phase transition in the two dimensional case. After Kramers and Wannier
[30] derived the value of the critical temperature and Onsager [36] analyzed
behavior of the partition function for the Ising model on the two-dimensional
square lattice, it became an archetypical example of the phase transition in
lattice models and in statistical mechanics in general, see [34, 35] for the
history of its rise to prominence.

Over the last six decades, thousands of papers were written about the Ising
model, with most of the literature, including this paper, restricted to the two
dimensional case (similar behavior is expected in three dimensions, but for
now the complete description remains out of reach). The partition function
and other parameters were computed exactly in several different ways, usually
on the square lattice or other regular graphs. It is thus customary to say that
the 2D Ising model is exactly solvable, though one should remark that most
of the derivations are non-rigorous, and moreover many quantities cannot be
derived by traditional methods.

Arrival of the renormalization group formalism (see [16] for a histori-
cal exposition) led to an even better physical understanding, albeit still non-
rigorous. It suggests that block-spin renormalization transformation (coarse-
graining, i.e., replacing a block of neighboring sites by one) corresponds to
appropriately changing the scale and the temperature. The Kramers-Wannier
critical point arises then as a fixed point of the renormalization transforma-
tions, with the usual picture of stable and unstable directions.

In particular, under simple rescaling the Ising model at the critical tem-
perature should converge to a scaling limit—a “continuous” version of the
originally discrete Ising model, which corresponds to a quantum field theory.
This leads to the idea of universality: the Ising models on different regular
lattices or even more general planar graphs belong to the same renormal-
ization space, with a unique critical point, and so at criticality the scaling
limit and the scaling dimensions of the Ising model should be independent
of the lattice (while the critical temperature depends on it). Being unique,
the scaling limit at the critical point is translation and scale invariant, which
allows to deduce some information about correlations [21, 37]. By addition-
ally postulating invariance under inversions, one obtains Möbius invariance,
i.e. invariance under global conformal transformations of the plane, which
allows [39] to deduce more. In seminal papers [3, 4] Belavin, Polyakov and
Zamolodchikov suggested much stronger full conformal invariance (under
all conformal transformations of subregions), thus generating an explosion of
activity in conformal field theory, which allowed to explain non-rigorously
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many phenomena, see [20] for a collection of the founding papers of the sub-
ject. Note that in the physics literature there is sometimes confusion between
the two notions, with Möbius invariance often called conformal invariance,
though the latter is a much stronger property.

Over the last 25 years our physical understanding of the 2D critical lattice
models has greatly improved, and the universality and conformal invariance
are widely accepted by the physics community. However, supporting argu-
ments are largely non-rigorous and some even lack physical motivation. This
is especially awkward in the case of the Ising model, which indeed admits
many exact calculations.

1.1.2 Our results

The goal of this paper is to construct lattice holomorphic fermions and to
show that they have a universal conformally invariant scaling limit. We give
unambiguous (and mathematically rigorous) arguments for the existence of
the scaling limit, its universality and conformal invariance for some observ-
ables for the 2D Ising model at criticality, and provide the framework to es-
tablish the same for all observables. By conformal invariance we mean not
the Möbius invariance, but rather the full conformal invariance, or invariance
under conformal transformations of subregions of C. This is a much stronger
property, since conformal transformations form an infinite dimensional pseu-
dogroup, unlike the Möbius ones. Working in subregions necessarily leads us
to consider the Ising model in domains with appropriate boundary conditions.

At present we cannot make rigorous the renormalization approach, but we
hope that the knowledge gained will help to do this in the future. Rather, we
use the integrable structure to construct discrete holomorphic fermions in the
Ising model. For simplicity we work with discrete holomorphic functions, de-
fined e.g. on the graph edges, which when multiplied by the

√
dz field become

fermions or spinors. Those functions turn out to be discrete holomorphic so-
lutions of a discrete version of the Riemann-Hilbert boundary value problem,
and we develop appropriate tools to show that they converge to their contin-
uous counterparts, much as Courant, Friedrichs and Lewy have done in [13]
for the Dirichlet problem. The continuous versions of our boundary value
problems are

√
dz-covariant, and conformal invariance and universality then

follow, since different discrete conformal structures converge to the same uni-
versal limit.

Starting from these observables, one can construct new ones, describe in-
terfaces by the Schramm’s SLE curves, and prove and improve many pre-
dictions originating in physics. Moreover, our techniques work off criticality,
and lead to massive field theories and SLEs. Several possible developments
will be the subject of our future work [9, 18, 24].

We will work with the family of isoradial graphs or equivalently rhombic
lattices. The latter were introduced by Duffin [15] in late sixties as (perhaps)
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the largest family of graphs for which the Cauchy-Riemann operator admits
a nice discretization. They reappeared recently in the work of Mercat [33]
and Kenyon [28], as isoradial graphs—possibly the largest family of graphs
were the Ising and dimer models enjoy the same integrability properties as
on the square lattice: in particular, the critical point is well defined, with
weights depending only on the local structure. More recently, Boutilier and
de Tilière [6, 7] used the Fisher representation of the Ising model by dimers
and Kenyon’s techniques to calculate, among other things, free energy for
the Ising model on isoradial graphs. While their work is closely related to
ours (we can too use the Fisher representation instead of the vertex opera-
tors to construct holomorphic fermions), they work in the full plane and so
do not address conformal invariance. Note that earlier eight vertex and Ising
models were considered by Baxter [2] on Z-invariant graphs, arising from
planar line arrangements. Those graphs are topologically the same as the iso-
radial graphs, and the choice of weights coincides with ours, so quantities like
partition function would coincide. Kenyon and Schlenker [29] have shown
that such graphs admit isoradial embeddings, but those change the conformal
structure, and one does not expect conformal invariance for the Ising model
on general Z-invariant graphs.

So there are two reasons for our choice of this particular family: firstly it
seems to be the largest family where the Ising model we are about to study
is nicely defined, and secondly (and perhaps not coincidentally) it seems to
be the largest family of graphs where our main tools, the discrete complex
analysis, works well. It is thus natural to consider this family of graphs in
the context of conformal invariance and universality of the 2D Ising model
scaling limits.

The fermion we construct for the random cluster representation of the Ising
model on domains with two marked boundary points is roughly speaking
given by the probability that the interface joining those points passes through
a given edge, corrected by a complex weight. The fermion was proposed in
[46, 47] for the square lattice (see also independent [41] for its physical con-
nections, albeit without discussion of the boundary problem and covariance).
The fermion for the spin representation is somewhat more difficult to con-
struct, it corresponds to the partition function of the Ising model with a

√
z

monodromy at a given edge, again corrected by a complex weight. We de-
scribe it in terms of interfaces, but alternatively one can use a product of
order and disorder operators at neighboring site and dual site, or work with
the inverse Kasteleyn’s matrix for the Fisher’s dimer representation. It was
introduced in [47], although similar objects appeared earlier in Kadanoff and
Ceva [22] (without complex weight and boundary problem discussions) and
in Mercat [33] (again without discussion of boundary problem and covari-
ance).
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Complex analysis on isoradial graphs is more complicated then on the
square grid, and less is known a priori about the Ising model there. As a
result parts of our paper are quite technical, so we would recommend reading
the much easier square lattice proofs [46], as well as the general exposition
[47, 48] first.

1.1.3 Other lattice models

Over the last decade, conformal invariance of the scaling limit was established
for a number of critical lattice models. An up-to-date introduction can be
found in [47], so we will only touch the question of universality here.

Spectacular results of Kenyon on conformal invariance of the dimer model,
see e.g. [25, 27], were originally obtained on the square lattice. Some were
extended to the isoradial case by de Tilière [14], but the questions of boundary
conditions and hence conformal invariance were not addressed yet.

Kenyon’s dimer results had corollaries [26] for the Uniform Spanning Tree
(and the Loop Erased Random Walk). Those used the Temperley bijection be-
tween dimer and tree configurations on two coupled graphs, so they would ex-
tend to the situations where boundary conditions can be addressed and Tem-
perley bijection exists.

Lawler, Schramm and Werner used in [31] simpler observables to establish
conformal invariance of the scaling limit of the UST interfaces and the LERW
curves, and to identify them with Schramm’s SLE curves. In both cases one
can obtain observables using the Random Walk, and for the UST one can use
the Kirchhoff circuit laws to obtain discrete holomorphic quantities. The orig-
inal paper deals with the square lattice only, but it easily generalizes whenever
boundary conditions can be addressed.

In all those cases we have to deal with convergence of solutions of the
Dirichlet or Neumann boundary value problems to their continuous counter-
parts. While this is a standard topic on regular lattices, there are technical
difficulties on general graphs; moreover functions are unbounded (e.g. ob-
servable for the LERW is given by the Poisson kernel), so controlling their
norm is far from trivial. Tools developed by us in [10] for use in the current
paper however resolve most of such difficulties.

Situation is somewhat easier with the observables for the Harmonic Ex-
plorer and Discrete Gaussian Free Field, as discussed by Schramm and
Sheffield [42, 43]—both are harmonic and solving Dirichlet problem with
bounded boundary values, so the generalization from the original triangular
lattice is straight-forward. Note though that the key difficulty in the DGFF
case is to establish the martingale property of the observable.

Unlike the observables above, the one used for percolation in [44, 45] is
very specific to the triangular lattice, so the question of universality is far from
being resolved.
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All the observables introduced so far (except for the fermions from this
paper) are essentially bosonic, either invariant under conformal transforma-
tions ϕ or changing like “pre-pre-Schwarzian” forms, i.e. by an addition
of const ·ϕ′. They all satisfy Dirichlet or Neumann boundary conditions,
when establishing convergence is a classical subject, dating back to Courant,
Friedrichs and Lewy [13], albeit in the non-bounded case one meets serious
difficulties.

In the Ising case we work with fermions, hence the Riemann-Hilbert
boundary value problem (or rather its homogeneous version due to Riemann).
Such problems turn out to be much more complicated already on regular lat-
tices: near rough boundaries (which arise naturally since interfaces are frac-
tal) our observables blow up fast. When working on general graphs, the main
problem remains, but the tools become quite limited.

We believe that further progress in other models requires the study of holo-
morphic parafermions [47], so we expect even more need to address the Rie-
mann boundary value problems in the future.

1.2 Setup and main results

Throughout the paper, we work with isoradial graphs or, equivalently, rhom-
bic lattices. A planar graph � embedded in C is called δ-isoradial if each
face is inscribed into a circle of a common radius δ. If all circle centers are
inside the corresponding faces, then one can naturally embed the dual graph
�∗ in C isoradially with the same δ, taking the circle centers as vertices of
�∗. The name rhombic lattice is due to the fact that all quadrilateral faces of
the corresponding bipartite graph � (having � ∪ �∗ as vertices and radii of
the circles as edges) are rhombi with sides of length δ. We denote the set of
rhombi centers by ♦ (example of an isoradial graph is drawn in Fig. 1A). We
also require the following mild assumption:

the rhombi angles are uniformly bounded away from 0 and π

(in other words, all these angles belong to [η,π − η] for some fixed η > 0).
Below we often use the notation const for absolute positive constants that
don’t depend on the mesh δ or the graph structure but, in principle, may de-
pend on η. We also use the notation f � g which means that a double-sided
estimate const1 ·f ≤ g ≤ const2 ·g holds true for some const1,2 > 0 which are
independent of δ.

It is known that one can define the (critical) Ising model on �∗ so that

(a) the interaction constants Jwiwj
are local (namely, depend on the lengths

of edges connecting wi,j ∈ �∗, wi ∼ wj , only) and
(b) the model is invariant under the star-triangle transform.

Such invariance is widely recognized as the crucial sign of the integrability.
Note that the star-triangle transform preserves the isoradial graph/rhombic
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Fig. 1 (A) Example of an isoradial graph � (black vertices, solid lines), its dual isoradial
graph �∗ (gray vertices, dashed lines), the corresponding rhombic lattice or quad-graph (ver-
tices � = � ∪ �∗, thin lines) and the set ♦ = �∗ (rhombi centers, white diamond-shaped
vertices). (B) Local notation near u ∈ �, with neighbors of u enumerated counterclockwise
by 1,2 . . . , s, s + 1, . . . , n. The weight μδ

�(u) is equal to the shaded polygon area. (C) Defini-
tion of s-holomorphic functions: F(z0) and F(z1) have the same projections on the direction

[i(w1 − u)]− 1
2 . Thus, we have one real identity for each pair of neighboring z0, z1

lattice structure. Moreover, isoradial graphs form the largest family of planar
graphs (embedded into C) satisfying these properties (see [12] and references
therein). At the same time, discrete holomorphic functions on isoradial graphs
provide the simplest example of a discrete integrable system in the so-called
“consistency approach” to the (discrete) integrable systems theory (see [5]).

Recently, it was understood (see [33, 41, 47]) that some objects coming
from the theoretical physics approach to the Ising model (namely, products
of order and disorder operators with appropriate complex weights) can be
considered and dealt with as discrete holomorphic functions (see Sect. 3.2
for further discussion). These functions (which we call basic observables or
holomorphic fermions) provide a powerful tool for rigorous proofs of several
results concerning the conformal invariance of the critical 2D Ising model.
Implementing the program proposed and started in [46, 47] for the square
grid, in this paper we mainly focus our attention on the topologically simplest
case, when the model is defined in the simply-connected (discrete) domain 	δ
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having two marked boundary points aδ, bδ (but see Sect. 6 for more involved
setup). We have to mark some boundary points so that the conformal modulus
is non-trivial, allowing us to construct conformal invariants.

We will work with two representations of the Ising model: the usual spin,
as well as the random cluster (Fortuin-Kasteleyn). The observables are simi-
lar, but do not directly follow from each other, and require slightly different
approaches. In either case there is an interface (between spin clusters or ran-
dom clusters)—a discrete curve γ δ running from aδ to bδ inside 	δ (see
Sects. 2.1, 2.2 for precise definitions). In both cases the basic observables
are martingales with respect to (filtration induced by) the interface grown
progressively from aδ , which opens the way to identify its scaling limit as a
Schramm’s SLE curve, cf. [47].

The interface in the random cluster representation can in principle pass
through some point twice, but with our setup we move apart those passages,
so that the curve becomes simple and when arriving at the intersection it is
always clear how to proceed. This setup is unique where the martingale prop-
erty holds, so there is only one conformally invariant way to address this prob-
lem. Note that the resulting scaling limit, the SLE(16/3) curve, will have dou-
ble points. A similar ambiguity arises in the spin model (when, e.g. a vertex
is surrounded by four spins “−+−+”), but regardless of the way to address
it (e.g. deterministic, like always turning right, or probabilistic, like tossing a
coin every time) the martingale property always holds, and so the SLE(3) is
the scaling limit. The latter is almost surely simple, so we conclude that the
double points in the discrete case produce only very small loops, disappearing
in the scaling limit.

The first two results of our paper say that, in both representations, the holo-
morphic fermions are uniformly close to their continuous conformally invari-
ant counterparts, independently of the structure of �δ (or ♦δ) and the shape
of 	δ (in particular, we don’t use any smoothness assumptions concerning
the boundary). Namely, we prove the following two theorems, formulated in
detail as Theorems 4.3 and 5.6:

Theorem A (FK-Ising fermion) Let discrete domains (	δ;aδ, bδ) with
two marked boundary points aδ, bδ approximate some continuous domain
(	;a, b) as δ → 0. Then, uniformly on compact subsets of 	 and indepen-
dently of the structure of ♦δ ,

Fδ(z) ⇒
√

�′(z),

where Fδ(z) = Fδ(z;	δ,aδ, bδ) is the discrete holomorphic fermion and �

denotes the conformal mapping from 	 onto the strip R × (0,1) such that
a, b are mapped to ∓∞.

and
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Theorem B (spin-Ising fermion) Let discrete domains (	δ;aδ, bδ) approxi-
mate some continuous domain (	;a, b) as δ → 0. Then, uniformly on com-
pact subsets of 	 and independently of the structure of �δ ,

Fδ(z) ⇒
√

� ′(z),

where Fδ = Fδ(z;	δ,aδ, bδ) is the discrete holomorphic fermion and � :
	 → C+ is the conformal mapping such that a and b are mapped to ∞ and
0, appropriately normalized at b.

Because of the aforementioned martingale property, these results are
sufficient to prove the convergence of interfaces to conformally invariant
Schramm’s SLE curves (in our case, SLE(3) for the spin representation and
SLE(16/3) for the FK representation) in the weak topology given by the con-
vergence of driving forces in the Loewner equation, cf. [31, 47]. A priori this
is very far from establishing convergence of curve themselves, but our proof
together with techniques of [23] implies stronger convergence, see also [11]
for a simplified account.

The third result shows how our techniques can be used to find the (con-
formally invariant) limit of some macroscopic quantities, “staying on the dis-
crete level”, i.e. without consideration of the limiting curves. Namely, we
prove a crossing probability formula for the critical FK-Ising model on iso-
radial graphs, analogous to Cardy’s formula [44, 45] for critical percolation
and formulated in detail as Theorem 6.1:

Theorem C (FK-Ising crossing probability) Let discrete domains (	δ;aδ, bδ,

cδ, dδ) with alternating (wired/free/wired/free) boundary conditions on four
sides approximate some continuous topological quadrilateral (	;a, b, c, d)

as δ → 0. Then the probability of an FK cluster crossing between two wired
sides has a scaling limit, which depends only on the conformal modulus of
the limiting quadrilateral, and is given for the half-plane by

p(H;0,1 − u,1,∞) =
√

1 − √
1 − u

√
1 − √

u +
√

1 − √
1 − u

, u ∈ [0,1]. (1.1)

The version of this formula for multiple SLEs was derived by Bauer,
Bernard and Kytölä in [1], see page 1160, their notation for the modulus
related to ours by x = 1 − u. Besides being of an independent interest,
this result together with [23] is needed to improve the topology of conver-
gence of FK-Ising interfaces. Curiously, the (macroscopic) answer for a unit
disc (D;−eiφ, e−iφ, eiφ,−e−iφ) formally coincides with the relative weights
corresponding to two possible crossings inside (microscopic) rhombi (see
Fig. 2A) in the critical model (see Remark 6.2).
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1.3 Organization of the paper

We begin with the definition of Fortuin-Kasteleyn (random cluster) and spin
representations of the critical Ising model on isoradial graphs in Sect. 2.
From the outset we work with critical interactions, but in principle one can
introduce a temperature parameter, which would lead to massive holomor-
phic fermions. We also introduce the basic discrete holomorphic observables
(holomorphic fermions) satisfying the martingale property with respect to the
growing interface and, essentially, show that they satisfy discrete version of
the Cauchy-Riemann equation (Proposition 2.2 and Proposition 2.5) using
some simple combinatorial bijections between the sets of configurations. Ac-
tually, we show that our observables satisfy the stronger “two-points” equa-
tion which we call spin or strong holomorphicity, or simply s-holomorphicity.

We discuss the properties of s-holomorphic functions in Sect. 3. The main
results are:

(a) The (rather miraculous) possibility to define naturally the discrete ver-
sion of h(z) = Im

∫
(f (z))2 dz, see Proposition 3.6. Note that the square

(f (z))2 of a discrete holomorphic function f (z) is not discrete holomor-
phic anymore, but unexpectedly it satisfies “half” of the Cauchy-Riemann
equations, making its imaginary part a closed form with a well-defined
integral;

(b) The sub- and super-harmonicity of h on the original isoradial graph �

and its dual �∗, respectively, and the a priori comparability of the com-
ponents h|� and h|�∗ which allows one to deal with h as with a harmonic
function: e.g. nonnegative h’s satisfy a version of the Harnack Lemma
(see Sect. 3.4);

(c) The uniform (w.r.t. δ and the structure of the isoradial graph/rhombic
lattice �,�∗/♦) boundedness and, moreover, uniform Lipschitzness of
s-holomorphic functions inside their domains of definition 	δ , with
the constants depending on M = maxv∈	δ |h(v)| and the distance d =
dist(z; ∂	δ) only (Theorem 3.12, these results should be considered as
discrete analogous of the standard estimates from the classical complex
analysis);

(d) The combinatorial trick (see Sect. 3.6) that allows us to transform the dis-
crete version of the Riemann-type boundary condition f (ζ ) ‖ (τ (ζ ))− 1

2

into the Dirichlet condition for h|∂	 on both � and �∗, thus completely
avoiding the reference to Onsager’s magnetization estimate used in [46,
47] to control the difference h|� − h|�∗ on the boundary.

We prove the (uniform) convergence of the basic observable in the FK-
Ising model to its continuous counterpart in Sect. 4. The main result here
is Theorem 4.3, which is the technically simplest of our main theorems, so
the reader should consider the proof as a basic example of the application
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of our techniques. Besides the results from [10] and the previous Sections,
the important idea (exactly as in [46]) is to use some compactness arguments
(in the set of all simply-connected domains equipped with the Carathéodory
topology) in order to derive the uniform (w.r.t. to the shape of 	δ and the
structure of ♦δ) convergence from the “pointwise” one.

In Sect. 5 we prove analogous convergence result for the holomorphic
fermion defined for the spin representation of the critical Ising model (Theo-
rem 5.6). There are two differences from the preceding section: the unbound-
edness of the (discrete) integral h = Im

∫
(f (z))2 dz (this prevents us from

the immediate use of compactness arguments) and the need to consider the
normalization of our observable at the target point bδ (this is crucial for the
martingale property). In order to handle the normalization at bδ , we assume
that our domains 	δ contain a (macroscopic) rectangle near bδ and their
boundaries ∂	δ approximate the corresponding straight segment as δ → 0.
Making this technical assumption, we don’t lose much generality, since the
growing interface, though fractal in the limit, doesn’t change the shape of
the domain near bδ . Then, we use a version of the boundary Harnack princi-
ple (Proposition 5.3) in order to control the values of h in the bulk through
the fixed value f (bδ). Another important technical ingredient is the universal
(w.r.t. to the structure of ♦δ) multiplicative normalization of our observable.
Loosely speaking, we define it using the value at bδ of the discrete holo-
morphic fermion in the discrete half-plane (see Theorem 5.4 for further de-
tails).

Section 6 is devoted to the crossing probability formula for the FK-Ising
model on discrete quadrilaterals (	δ;aδ, bδ, cδ, dδ) (Theorem 6.1, see also
Remark 6.2). The main idea here is to construct some discrete holomor-
phic in 	δ function whose boundary values reflect the conformal mod-
ulus of the quadrilateral. Namely, in our construction, discrete functions
hδ = Im

∫
(f δ(z))2 dz approximate the imaginary part of the conformal map-

ping from 	δ onto the slit strip [R × (0,1)] \ (−∞ + iκ; iκ] such that aδ

is mapped to the “lower” −∞, bδ to +∞; cδ to the “upper” −∞ and dδ

to the tip iκ. The respective crossing probabilities are in the 1-to-1 cor-
respondence with values κ

δ which approximate κ as δ → 0. Since κ is
uniquely determined by the limit of conformal moduli of (	δ;aδ, bδ, cδ, dδ),
we obtain (1.1) (see further details in Sect. 6). Finally, Appendix contains
several auxiliary lemmas: estimates of the discrete harmonic measure, dis-
crete version of the Cauchy formula, and technical estimates of the Green
function in the disc. We refer the reader interested in a more detailed pre-
sentation of the discrete complex analysis on isoradial graphs to our paper
[10].
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Fig. 2 (A) Loop representation of the critical FK-Ising model on isoradial graphs: the relative
weights corresponding to two possible choices of connections inside the inner rhombus z (the
partition function is given by (2.1)). (B) Discrete domain 	δ♦ with a sample configuration. Be-

sides loops, there is an interface γ δ connecting aδ to bδ . Calculating the winding(γ δ; bδ � ξ),
we draw γ δ so that it intersects the edge ξ = [ξbξw] orthogonally. As γ δ grows, it separates
some part of 	δ♦ (shaded) from bδ . We denote by 	δ♦ \ [aδγ δ

1 ..γ δ
j
] the connected component

containing bδ (unshaded)

2 Critical spin- and FK-Ising models on isoradial graphs. Basic
observables (holomorphic fermions)

2.1 Critical FK-Ising model

2.1.1 Loop representation of the model, holomorphic fermion, martingale
property

We will work with a graph domain which can be thought of as a discretization
of a simply-connected planar domain with two marked boundary points. Let
	δ♦ ⊂ ♦ be a simply-connected discrete domain composed of inner rhombi
z ∈ Int	δ♦ and boundary half-rhombi ζ ∈ ∂	δ♦, with two marked boundary
points aδ , bδ and Dobrushin boundary conditions (see Fig. 2B): ∂	δ♦ consists
of the “white” arc aδ

wbδ
w, the “black” arc bδ

ba
δ
b, and two edges [aδ

ba
δ
w], [bδ

bb
δ
w]

of �. Without loss of generality, we assume that

bδ
b − bδ

w = iδ, i.e., the edge bδ = [bδ
bb

δ
w] is oriented vertically.

For each inner rhombus z ∈ Int	δ♦ we choose one of two possibilities
to connect its sides (see Fig. 2A, there is only one choice for boundary
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half-rhombi), thus obtaining the set of configurations (whose cardinality is

2#(Int	δ♦)). The partition function of the critical FK-Ising model is given by

Z =
∑

config.

√
2

#(loops) ∏

z∈Int	δ♦

sin
1

2
θconfig.(z), (2.1)

where θconfig.(z) is equal to either θ or θ∗ = π
2 − θ depending on the choice

of connections inside rhombus z (see Fig. 2A).
We described the loop representation, since at criticality it is easier to work

with, than the usual random cluster one. The loops trace the perimeters of
random clusters, and the curve joining the two marked boundary points is the
interface between a cluster and a dual cluster wired on two opposite boundary
arcs (the so-called Dobrushin boundary conditions).

Let ξ = [ξbξw] be some inner edge of 	δ♦ (where ξb ∈ �, ξw ∈ �∗). Due to
the boundary conditions chosen, each configuration consists of (a number of)
loops and one interface γ δ running from aδ to bδ . The holomorphic fermion
is defined as

Fδ(ξ) = Fδ
(	δ;aδ,bδ)

(ξ) := (2δ)−
1
2 · E

[
χ(ξ ∈ γ δ) · e− i

2 winding(γ δ;bδ�ξ)
]
,

(2.2)
where χ(ξ ∈ γ δ) is the indicator function of the event that the interface inter-
sects ξ and

winding(γ δ; bδ � ξ) = winding(γ δ; aδ � ξ) − winding(γ δ; aδ � bδ)

(2.3)
denotes the total turn of γ δ measured (in radians) from bδ to ξ . Note that, for
all configurations and edges ξ one has (see Fig. 2B),

e− i
2 winding(γ δ;bδ�ξ) ‖ [i(ξw − ξb)]− 1

2 .

Remark 2.1 (Martingale property) For each ξ , Fδ

(	δ\[aδγ δ
1 ..γ δ

j ];γ δ
j ,bδ)

(ξ) is a

martingale with respect to the growing interface (aδ = γ δ
0 , γ δ

1 , . . . , γ δ
j , . . .)

(till the stopping time when γ δ hits ξ or ξ becomes separated from bδ by the
interface, see Fig. 2B).

Proof Since the winding(γ δ; bδ � ξ) doesn’t depend on the beginning of the
interface, the claim immediately follows from the total probability formula. �

2.1.2 Discrete boundary value problem for Fδ

We start with the extension of Fδ to the centers of rhombi z ∈ 	δ♦. Actually,
the (rather fortunate) opportunity to use the definition given below reflects the
discrete holomorphicity of Fδ (see discussion in Sect. 3.2).
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Fig. 3 Local rearrangement at z: the bijection between configurations. Without loss of gen-
erality, we may assume that the (reversed, i.e., going from bδ ) interface enters the rhombus z

through the edge [u2w1] (the case [u1w2] is completely similar). There are two possibilities:
either γ δ (finally) leaves z through [u1w1] (“L”, left turn) or through [u2w2] (“R”, right turn).
In view of (2.1), the relative weights of configurations are

√
2 sin 1

2θ , sin 1
2 θ∗ (“L” pairs), and

sin 1
2 θ ,

√
2 sin 1

2 θ∗ (“R” pairs)

Proposition 2.2 Let z ∈ Int	δ♦ be the center of some inner rhombus
u1w1u2w2. Then, there exists a complex number Fδ(z) such that

Fδ([ujwk]) = Proj
[
Fδ(z) ; [i(wk − uj )]− 1

2
]
, j, k = 1,2. (2.4)

The proposition essentially states that Fδ is spin holomorphic as specified
in Definition 3.1 below. By Proj[X;ν] we denote the orthogonal projection of
the vector X on the vector ν, which is parallel to ν and equal to

Proj[X;ν] = Re

(
X

ν

|ν|
)

ν

|ν| = X

2
+ Xν2

2|ν|2

(here we consider complex numbers as vectors). Because of the latter rewrit-
ing, the choice of the sign in the square root in (2.4) does not matter.

Proof As on the square grid (see [46]), the proof is based on the bijection
between configurations which is produced by their local rearrangement at z.
It is sufficient to check that the contributions to Fδ([ujwk])’s of each pair
of configurations drawn in Fig. 3 are the specified projections of the same
complex number. The relative contributions of configurations (up to the same
real factor coming from the structure of the configuration away from z) to the
values of F on four edges around z for the pairs “L” and “R” are given by
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e
i
ϕ
2 · Fδ([u2w1]) e

i
ϕ
2 · Fδ([u2w2]) e

i
ϕ
2 · Fδ([u1w2]) e

i
ϕ
2 · Fδ([u1w1])

L
√

2 sin θ
2 + sin θ∗

2 eiθ sin θ∗
2 −i sin θ∗

2 e−iθ∗ [√2 sin θ
2 + sin θ∗

2 ]
R sin θ

2 + √
2 sin θ∗

2 eiθ [sin θ
2 + √

2 sin θ∗
2 ] i sin θ

2 e−iθ∗
sin θ

2

where ϕ denotes the total turn of the interface traced from bδ to [u2w1]. An
easy trigonometric calculation using that θ + θ∗ = π/2 shows that
[√

2 sin
θ

2
+ sin

θ∗

2

]
− i sin

θ∗

2
= eiθ sin

θ∗

2
+ e−iθ∗

[√
2 sin

θ

2
+ sin

θ∗

2

]
.

Denoting the common value of the two sides by ei
ϕ
2 · Fδ(z) and observing

that 1 ⊥ i and eiθ ⊥ e−iθ∗
, we conclude that the first row (“L”) describes the

four projections of ei
ϕ
2 · Fδ(z) onto the lines R, eiθ

R, iR and e−iθ∗
R, re-

spectively. Multiplying by the common factor e−i
ϕ
2 (which is always parallel

to [i(w1 − u2)]− 1
2 ), we obtain the result for “L” pairs of configurations. The

interchanging of θ and θ∗ yields the result for “R” pairs. �

Remark 2.3 For ζ ∈ ∂	δ♦ we define Fδ(ζ ) so that (2.4) holds true (in this
case, only two projections are meaningful, so Fδ(ζ ) is easily and uniquely
defined). Note that all interfaces passing through the half-rhombus ζ inter-
sect both its sides. Moreover, since the winding of the interface at ζ is inde-
pendent of the configuration chosen (and coincides with the winding of the
corresponding boundary arc) for topological reasons, we have

Fδ(ζ ) ‖ (τ (ζ ))−
1
2 , ζ ∈ ∂	δ♦, (2.5)

where (see Fig. 2B)

τ(ζ ) = w2(ζ ) − w1(ζ ), ζ ∈ (aδbδ), w1,2(ζ ) ∈ �∗,
τ (ζ ) = u2(ζ ) − u1(ζ ), ζ ∈ (bδaδ), u1,2(ζ ) ∈ �,

is the “discrete tangent vector” to ∂	δ♦ directed from aδ to bδ on both bound-
ary arcs.

Thus, we arrive at

Discrete Riemann boundary value problem for Fδ (FK-case) The function
Fδ is defined in 	δ♦ and for each pair of neighbors z0, z1 ∈ 	δ♦, z0 ∼ z1, the
discrete holomorphicity condition holds:

Proj
[
Fδ(z0) ; [i(w − u)]− 1

2
] = Proj

[
Fδ(z1) ; [i(w − u)]− 1

2
]
. (2.6)
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Fig. 4 (A) Ising model on isoradial graphs: discrete domain 	δ♦ and a sample configuration
(the partition function is given by (2.7)). By our choice of the “turning rule,” loops and the
interface γ δ separate clusters of “+” spins connected through edges and clusters of “−” spins
connected through vertices. To illustrate this, γ δ and loops are drawn slightly closer to “+”
spins. The component of 	δ not “swallowed” by the path [aδγ δ

1 ..γ δ
j
] is unshaded. The vertex

u1 is shaded since it is not connected to bδ anymore. The vertices u2 and u3 are shaded too
since each of them is connected to the bulk by a single edge which contradicts our definition of
connected discrete domains. Moreover, since the “interface” aδ � γ δ

j
� z could arrive at each

of these points only in a single way, our observable certainly satisfies boundary condition (2.10)
at z2 and z3, thus not distinguishing them from the other boundary points. (B) Two samples
of “interface pictures” composed from a number of loops and a single interface γ δ running
from aδ to z. To define the winding(γ δ; aδ � z) unambiguously, we draw γ δ so that, if there
is a choice, it turns to the left (for z ∈ ∂	δ♦, this corresponds to the edge-connectivity of “+”
clusters)

Moreover, Fδ satisfies the boundary conditions (2.5) and, since all interfaces

pass through bδ , satisfies the normalization Fδ(bδ) = ReFδ(bδ♦) = (2δ)− 1
2 .

2.2 Critical spin-Ising model

2.2.1 Definition of the model, holomorphic fermion, martingale property

Let 	δ♦ ⊂ ♦ be a simply-connected discrete domain composed of inner
rhombi z ∈ Int	δ♦ and boundary half-rhombi ζ ∈ ∂	δ♦, with two marked
boundary points aδ, bδ ∈ ∂	δ♦, such that ∂	δ♦ contains only “white” vertices
(see Fig. 4A) and there is no edge of �∗ breaking 	δ♦ into two non-connected
pieces.

To each inner “white” vertex w ∈ Int	δ
�∗ , we assign the spin σ(w) (+ or

−), thus obtaining the set of configurations (whose cardinality is 2#(Int	δ
�∗ )).



532 D. Chelkak, S. Smirnov

We also impose Dobrushin boundary conditions assigning the − spins to ver-
tices on the boundary arc (aδbδ) and the + spins on the boundary arc (bδaδ)

(see Fig. 4A). The partition function of the critical spin-Ising model is given
by

Z̃(	δ;aδ�bδ) =
[

sin
1

2
θ(bδ)

]−1 ∑

spin config.

∏

w1∼w2:σ(w1) �=σ(w2)

xw1w2,

xw1w2 = tan
1

2
θ(z), (2.7)

where θ(z) is the half-angle of the rhombus u1w1u2w2 having center at z

(i.e., tan θw1w2 = |w2 − w1|/|u2 − u1|). The first factor sin−1 doesn’t depend
on the configuration, and is introduced for technical reasons.

Due to Dobrushin boundary conditions, for each configuration, there is an
interface γ δ running from aδ to bδ and separating + spins from − spins. If �

is not a trivalent graph, one needs to specify the algorithm of “extracting γ δ

from the picture”, if it can be done in different ways. Below we assume that,

if there is a choice, the “interface” takes the left-most possible route (see
Fig. 4).

With this choice the interface separates clusters of “+” spins connected
through edges and clusters of “−” spins connected through vertices. Any
other choice would do for the martingale property and eventual conformal
invariance, as discussed in the Introduction. For example, one can toss a coin
at each vertex to decide whether “+” or “−” spin clusters connect through
it. Note that, drawing all the edges separating + spins from − spins, one can
rewrite the partition function as a sum over all configurations � of edges
which consist of a single interface running from aδ to bδ and a number of
loops. Namely,

Z̃(	δ;aδ�bδ) =
[

sin
1

2
θ(bδ)

]−1 ∑

�={interface+loops}

×
∏

w1∼w2:[w1;w2] intersects ω

xw1w2 . (2.8)

For z ∈ 	δ♦, the holomorphic fermion is defined as (cf. (2.2), (2.3))

Fδ(z) = Fδ
(	δ;aδ,bδ)

(z)

:= F δ(bδ) · Z̃(	δ;aδ�z) · E(	δ;aδ�z)e
− i

2 winding(γ δ;aδ�z)

Z̃(	δ;aδ�bδ) · e− i
2 winding(aδ�bδ)

. (2.9)
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As in (2.8), Z̃(	δ;aδ�zδ) denotes the partition function for the set of “inter-
faces pictures” containing (besides loops) one interface γ δ running from aδ

to z (see Fig. 4B),

for each configuration we count all weights corresponding to the drawn
edges, including tan 1

2θ(aδ) and [cos 1
2θ(z)]−1 = [sin 1

2θ(z)]−1 · tan 1
2θ(z)

for the first and the last.

Then E(	δ;aδ�zδ) will stand for the expectation with respect to the corre-
sponding probability measure. Equivalently, one can take the partition func-
tion, multiplying the weight of each configuration by the complex factor

e− i
2 winding(γ δ;aδ�zδ) (which, for z ∈ Int	δ♦, may be equal to one of the four

different complex values α, iα, −α, −iα depending on the particular config-
uration). Finally,

F δ(bδ) ‖ (τ (bδ))−1/2, where τ(bδ) = w2(b
δ) − w1(b

δ), is a normalizing
factor that depends only on the structure of ♦δ near bδ (see Sect. 5.1).

Here and below, for ζ ∈ ∂	δ♦, τ(ζ ) = w2(ζ ) − w1(ζ ) denotes “discrete tan-
gent vector” to ∂	δ♦ oriented counterclockwise (see Fig. 4A for notation). For
any ζ ∈ ∂	δ♦, the winding(γ δ; aδ � ζ ) is fixed due to topological reasons,
and so

Fδ(ζ ) ‖ (τ (ζ ))−
1
2 , ζ ∈ ∂	δ♦ \ {aδ}, while Fδ(aδ) ‖ i(τ (aδ))−

1
2 .

(2.10)

Remark 2.4 (Martingale property) For each z ∈ Int	δ♦, Fδ

(	δ\[aδγ δ
j ];γ δ

j ,bδ)
(z)

is a martingale with respect to the growing interface (aδ = γ δ
0 , γ δ

1 , . . . , γ δ
j , . . .)

(till the stopping time when γ δ hits ξ or z becomes separated from bδ by the
interface, see Fig. 4A).

Proof It is sufficient to check that Fδ has the martingale property when γ δ

makes one step. Let aδ
L, . . . , aδ

R denote all possibilities for the first step. Then,

Z̃(	δ;aδ�bδ) = tan
1

2
θ(aδ) · [Z̃(	δ\[aδaδ

L];aδ
L�bδ) + · · ·

+ Z̃(	δ\[aδaδ
R];aδ

R�bδ)

]
, (2.11)

and so

P(γ δ
1 = aδ

L) =
Z̃(	δ\[aδaδ

L];aδ
L�bδ)

[tan 1
2θ(aδ)]−1Z̃(	δ;aδ�bδ)

, . . . ,
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P(γ δ
1 = aδ

R) =
Z̃(	δ\[aδaδ

R];aδ
R�bδ)

[tan 1
2θ(aδ)]−1Z̃(	δ;aδ�bδ)

.

Taking into account that the difference

winding(aδ � bδ) − winding(aδ
L � bδ) = winding(aδ → aδ

L),

we obtain

P(γ δ
1 = aδ

L) ·
Fδ

(	δ\[aδaδ
L];aδ

L,b)
(z)

F δ
(	δ;aδ,b)

(z)

= e− i
2 winding(aδ→aδ

L)

[tan 1
2θ(aδ)]−1

·
Z̃(	δ\[aδaδ

L];aδ
L�z) · Ee− i

2 winding(γ δ;aδ
L�z)

Z̃(	δ;aδ�z) · Ee− i
2 winding(γ δ;aδ�z)

and so on. On the other hand, counting “interface pictures” depending on the
first step as in (2.11), we easily obtain

[
tan

1

2
θ(aδ)

]−1

Z̃(	δ;aδ�z) · Ee− i
2 winding(γ δ;aδ�z)

= e− i
2 winding(aδ→aδ

L) · Z̃(	δ\[aδaδ
L];aδ

L�z) · Ee− i
2 winding(γ δ;aδ

L�z) + · · ·

+ e− i
2 winding(aδ→aδ

R) · Z̃(	δ\[aδaδ
R];aδ

R�z) · Ee− i
2 winding(γ δ;aδ

R�z),

which gives the result. �

2.2.2 Discrete boundary value problem for Fδ

Proposition 2.5 For each pair of neighbors z0, z1 ∈ 	δ♦ separated by an edge
(w1u), we have

Proj
[
Fδ(z0) ; [i(w1 − u)]− 1

2
] = Proj

[
Fδ(z1) ; [i(w1 − u)]− 1

2
]
. (2.12)

The proposition amounts to saying that Fδ is spin holomorphic as in Defi-
nition 3.1 below (see Fig. 1C for notation).

Proof The proof is based on the bijection between the set of “interface pic-
tures” (	δ; aδ � z0) and the similar set (	δ; aδ � z1), which is schemati-
cally drawn in Fig. 5. The relative contributions of the corresponding pairs
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Fig. 5 Bijection between the sets (	δ; aδ � z0) and (	δ; aδ � z1) (local notations z0,1,
θ0,1, u and w1 are given in Fig. 1C). In cases I–III, the winding ϕ1 = winding(γ δ

1 ; aδ � z1) is

unambiguously defined by ϕ0 = winding(γ δ
0 ; aδ � z0). In case IV, there are two possibilities:

ϕ1 is equal to either ϕ0 − 2π + θ0 + θ1 (IVa, IVc) or ϕ0 + 2π + θ0 + θ1 (IVb)

to Fδ(z0) and Fδ(z1) (up to the same real factor) are given in the following
table:

Fδ(z0) F δ(z1)

I [cos 1
2 θ0]−1 · e− i

2 ϕ [cos 1
2 θ1]−1 · e− i

2 (ϕ+θ0+θ1)

II [cos 1
2 θ0]−1 tan 1

2 θ1 · e− i
2 ϕ [cos 1

2 θ1]−1 · e− i
2 (ϕ−π+θ0+θ1)

III [cos 1
2 θ0]−1 · e− i

2 ϕ [cos 1
2 θ1]−1 tan 1

2 θ0 · e− i
2 (ϕ−π+θ0+θ1)

IV [cos 1
2 θ0]−1 tan 1

2 θ1 · e− i
2 ϕ [cos 1

2 θ1]−1 tan 1
2 θ0 · e− i

2 (ϕ±2π+θ0+θ1)

where ϕ = winding(γ δ; aδ � z0)− winding(aδ � bδ)+ arg τ(bδ). Note that

e− i
2 ϕ ‖ [w1 − w0]− 1

2 , e− i
2 (ϕ+θ0+θ1) ‖ [w2 − w1]− 1

2 , in cases I & II,

e− i
2 ϕ ‖ [w0 − w1]− 1

2 , e− i
2 (ϕ+θ0+θ1) ‖ [w1 − w2]− 1

2 , in cases III & IV.



536 D. Chelkak, S. Smirnov

A simple trigonometric calculation then shows that the (relative) contribu-

tions to both projections Proj[Fδ(zj ); [i(w −u)]− 1
2 ] for j = 0, 1 are equal to

1, tan 1
2θ1, tan 1

2θ0 and tan 1
2θ0 tan 1

2θ1 in cases I–IV, respectively. �

Summing it up, we arrive at

Discrete Riemann boundary value problem for Fδ (spin-case) The func-
tion Fδ is defined in 	δ♦ so that discrete holomorphicity (2.12) holds for
every pair of neighbors z0, z1 ∈ 	δ♦. Furthermore, Fδ satisfies the boundary
conditions (2.10) and is normalized at bδ .

3 S-holomorphic functions on isoradial graphs

3.1 Preliminaries. Discrete harmonic and discrete holomorphic functions on
isoradial graphs

We start with basic definitions of the discrete complex analysis on isoradial
graphs, more details can be found in Appendix and our paper [10], where a
“toolbox” of discrete versions of continuous results is provided.

Let � be an isoradial graph, and H be defined on some vertices of �. We
define its discrete Laplacian whenever possible by

[�δH ](u) := 1

μδ
�(u)

∑

us∼u

tan θs · [H(us) − H(u)], (3.1)

where μδ
�(u) = 1

2δ2 ∑
us∼u sin 2θs (see Fig. 1B for notation). Function H is

called (discrete) harmonic in some discrete domain 	δ
� if �δH = 0 at all

interior vertices of 	δ
� . It is worthwhile to point out that, on isoradial graphs,

as in the continuous setup, harmonic functions satisfy some (uniform w.r.t. δ

and the structure of ♦) variant of the Harnack’s Lemma (see Proposition A.4).
Let ωδ(u;E;	δ

�) denote the harmonic measure of E ⊂ ∂	δ
� viewed from

u ∈ Int	δ
� , i.e., the probability that the random walk generated by (3.1) (i.e.

such that transition probabilities at u are proportional to tan θs ’s) on � started
from u exits 	δ

� through E. As usual, ωδ is a probability measure on ∂	δ
�

and a harmonic function of u. If 	δ
� is bounded, then we have

H(u) =
∑

a∈∂	δ
�

ωδ(u; {a};	δ
�) · H(a), u ∈ Int	δ

�,

for any discrete harmonic in 	δ
� function H . Below we use some uniform

(w.r.t. δ and the structure of �) estimates of ωδ from [10], which are quoted
in Appendix.
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Let H be defined on some part of � or �∗ or � = � ∪ �∗ and z be the
center of the rhombus v1v2v3v4. We set

[∂δH ](z) := 1

2

[
H(v1) − H(v3)

v1 − v3
+ H(v2) − H(v4)

v2 − v4

]
, z ∈ ♦.

Furthermore, let F be defined on some subset of ♦. We define its discrete
∂

δ
-derivative by setting

[∂δF ](u) = − i

2μδ
�(u)

∑

zs∼u

(ws+1 − ws)F (zs), u ∈ � = � ∪ �∗ (3.2)

(see Fig. 1B for notation when u ∈ �). Function F is called (discrete) holo-

morphic in some discrete domain 	δ♦ ⊂ ♦ if ∂
δ
F = 0 at all interior vertices.

It is easy to check that �δ = 4∂
δ
∂δ , and so ∂δH is holomorphic for any har-

monic function H . Conversely, in simply connected domains, if F is holo-
morphic on ♦, then there exists a harmonic function H = ∫ δ

F (z) dδz such
that ∂δH = F . Its components H |� and H |�∗ are defined uniquely up to ad-
ditive constants by

H(v2) − H(v1) = F

(
1

2
(v2 + v1)

)
· (v2 − v1), v2 ∼ v1,

where both v1, v2 ∈ � or both v1, v2 ∈ �∗, respectively.
It is most important that discrete holomorphic (on ♦) functions are Lips-

chitz continuous in an appropriate sense, see Corollary A.7. For the sake of
the reader, we quote all other necessary results in Appendix.

3.2 S-holomorphic functions and the propagation equation for spinors

In this section we investigate the notion of s-holomorphicity which appears
naturally for holomorphic fermions in the Ising model (see (2.6), (2.12)). We
discuss its connections to spinors defined on the double-covering of ♦ edges
(see [33]) and essentially equivalent to the introduction of disorder operators
(see [22, 40] and the references therein). We don’t refer to this discussion
(except Definition 3.1 and elementary Lemma 3.2) in the rest of our paper.

Definition 3.1 Let 	δ♦ ⊂ ♦ be some discrete domain and F : 	δ♦ → C. We
call function F strongly or spin holomorphic, or s-holomorphic for short, if
for each pair of neighbors z0, z1 ∈ 	δ♦, z0 ∼ z1, the following projections of
two values of F are equal:

Proj[F(z0) ; [i(w1 − u)]− 1
2 ] = Proj[F(z1) ; [i(w1 − u)]− 1

2 ] (3.3)
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or, equivalently,

F(z1) − F(z0) = −i(w1 − u)δ−1 · (F (z1) − F(z0)), (3.4)

where (w1u), u ∈ �, w1 ∈ �∗, is the common edge of rhombi z0, z1 (see
Fig. 1C).

Recall that orthogonal projection of X on ν satisfies

Proj[X;ν] = Re

(
X

ν

|ν|
)

ν

|ν| = X

2
+ Xν2

2|ν|2 ,

which we used above.
It’s easy to check that the property to be s-holomorphic is stronger than the

usual discrete holomorphicity:

Lemma 3.2 If F : 	δ♦ → C is s-holomorphic, then F is holomorphic in 	δ♦,

i.e., [∂δF ](v) = 0 for all v ∈ Int	δ
�.

Proof Let v = u ∈ � (the case v = w ∈ �∗ is essentially the same) and Fs =
F(zs) (see Fig. 1B for notation). Then

−i

n∑

s=1

(ws+1 − ws)Fs = −i

n∑

s=1

(ws+1 − u)(Fs − Fs+1)

= −δ ·
n∑

s=1

(F s − F s+1) = 0.

Thus, [∂δF ](u) = 0. �

Conversely, in a simply-connected domain every discrete holomorphic
function can be decomposed into the sum of two s-holomorphic functions
(one multiplied by i):

Lemma 3.3 Let 	δ♦ be a simply connected discrete domain and F : 	δ♦ → C

be a discrete holomorphic function. Then there are (unique up to an additive
constant) s-holomorphic functions F1,F2 : 	δ♦ → C such that F = F1 + iF2.

Proof Let 	δ
ϒ denote the set of all oriented edges ξ = [ξbξw] of the rhombic

lattice ♦ connecting neighboring vertices ξb ∈ 	δ
� , ξw ∈ 	δ

�∗ . For a function
F : 	δ♦ → C, we define its differential on edges (more precisely, d F a 1-form
on the edges of the dual graph, but there is no difference) by

dF([uw1]) := F(z1) − F(z0), dF : 	δ
ϒ → C,
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The spinor S(ξ) := [i(wξ −uξ )]− 1
2 is naturally

defined on ϒ̂ (“continuously” around rhombi
and vertices). In particular,

S(ξ1) = −S(ξ5) =: α,

S(ξ2) = −S(ξ6) = eiθ∗
α,

S(ξ3) = −S(ξ7) = iα,

S(ξ4) = −S(ξ8) = ieiθ∗
α.

Fig. 6 Double covering ϒ̂ of ϒ (= edges of ♦)

(see Fig. 1C for notation). Then, a given antisymmetric function G defined
on 	δ

ϒ is the differential of some discrete holomorphic function F (uniquely
defined on 	δ♦ up to an additive constant) if for each (black or white) vertex
u ∈ 	δ

� (see Fig. 1B for notation when u ∈ �) two identities hold:

n∑

s=1

G([uws]) = 0 and
n∑

s=1

G([uws])(ws − u) = 0. (3.5)

Indeed, the first identity means that G is an exact form and so a differential
of some function F , and the second ensures that F is holomorphic by (3.2):

n∑

s=1

G([uws])(ws − u) =
n∑

s=1

(F (zs) − F(zs−1))(ws − u)

= −
n∑

s=1

F(zs)(ws+1 − ws).

Note that identities (3.5) are invariant under the antilinear involution G �→
G�, where

G�([uw]) := G([uw]) · i(w − u)δ−1.

On the other hand, from (3.4) we see that F is s-holomorphic iff [dF ]� =
d F . Thus, the functions Fj defined by dF1 = 1

2(dF + (dF )�) and d F2 =
1
2i

(dF − (dF )�) are s-holomorphic and do the job. Uniqueness easily follows
from (3.3): If 0 = F1 + iF2, and both functions are s-holomorphic, then (3.3)
implies that F1(z0) = F2(z0), and uniqueness follows. �
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Following Ch. Mercat [33], we denote by ϒ̂ the double-covering of the
set ϒ of edges ♦ which is connected around each z ∈ ♦ and each v ∈ �

(see [33, p. 209]). A function S defined on ϒ̂ is called a spinor if it changes
the sign between the sheets. The simplest example is the square root [i(w −
u)]− 1

2 naturally defined on ϒ̂ (see Fig. 6). We say that a spinor S satisfies the
propagation equation (see [33, p. 210] for historical remarks and Fig. 6 for
notation) if, when walking around the edges ξ1, . . . , ξ8 of a doubly-covered
rhombus, for any three consecutive edges spinor values satisfy

S(ξj+2) = (cos θj )
−1 · S(ξj+1) − tan θj · S(ξj ), (3.6)

where θj denotes the half-angle “between” ξj and ξj+1, i.e., θj = θ , if j is
odd, and θj = π

2 − θ , if j is even.

Lemma 3.4 Let 	δ♦ be a simply connected discrete domain. If a function

F : 	δ♦ → C is s-holomorphic then the real spinor

Fϒ̂([uw]) := Re[F(z0) · [i(w − u)] 1
2 ] = Re[F(z1) · [i(w − u)] 1

2 ] (3.7)

satisfies the propagation equation (3.6). Conversely, if Fϒ̂ is a real spinor
satisfying (3.6), then there exists a unique s-holomorphic function F such
that (3.7) holds.

Proof Note that (3.6) is nothing but the relation between the projections

of the same complex number onto three directions α = [i(w1 − u1)]− 1
2 ,

ei( π
2 −θ)α = [i(w2 −u1)]− 1

2 and iα = [i(w2 −u2)]− 1
2 . Thus, s-holomorphicity

of F implies (3.6). Conversely, starting with some real spinor Fϒ̂ satisfying
(3.6), one can construct a function F such that

Proj[F(z); [i(w − u)]− 1
2 ] = Fϒ̂([uw]) · [i(w − u)]− 1

2

(which is equivalent to (3.7)) for any z, and this function is s-holomorphic by
the construction. �

3.3 Integration of F 2 for s-holomorphic functions

Lemma 3.5 If F, F̃ : 	δ♦ → C are s-holomorphic, then [∂δ
(F F̃ )](v) ∈ iR,

v ∈ 	δ
�.

Proof Let v = u ∈ � (the case v = w ∈ �∗ is essentially the same) and de-
note Fs := F(zs) (see Fig. 1B for notation). Using (3.4), we infer that ∂δF 2
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satisfies:

−i

n∑

s=1

(ws+1 − ws)F
2
s

= −δ ·
n∑

s=1

(Fs + Fs+1)(F s − F s+1) = 2iδ · Im
n∑

s=1

F sFs+1 ∈ iR.

Therefore, 4[∂δ
(F F̃ )](u) = [∂δ

(F + F̃ )2](u) − [∂δ
(F − F̃ )2](u) ∈ iR. �

In the continuous setup, the condition Re[∂G](z) ≡ 0 allows one to de-
fine the function Im

∫
G(z)dz (i.e., in simply connected domains, the integral

doesn’t depend on the path). It is easy to check that the same holds in the dis-
crete setup. Namely, if 	δ♦ is simply connected and G : 	δ♦ → C is such that

Re[∂δ
G] ≡ 0 in 	δ♦, then the discrete integral H = Im

∫ δ
G(z) dδz is well-

defined (i.e., doesn’t depend on the path of integration) on both 	δ
� ⊂ � and

	δ
�∗ ⊂ �∗ up to two (different for � and �∗) additive constants.
It turns out that if G = F 2 for some s-holomorphic F , then H =

Im
∫ δ

(F (z))2 dδz can be defined simultaneously on � and �∗ (up to one
additive constant) in the following way:

H(u) − H(w1) := 2δ · |Proj[F(zj ); [i(w1 − u)]− 1
2 ]|2, u ∼ w1, (3.8)

where (uw1), u ∈ �, w1 ∈ �∗, is the common edge of two neighboring
rhombi z0, z1 ∈ ♦ (see Fig. 1C), and taking j = 0,1 gives the same value.

Proposition 3.6 Let 	δ♦ be a simply connected discrete domain. If F : 	δ♦ →
C is s-holomorphic, then

(i) function H : 	δ
� → C is well-defined (up to an additive constant) by

(3.8);
(ii) for any neighboring v1, v2 ∈ 	δ

� ⊂ � or v1, v2 ∈ 	δ
�∗ ⊂ �∗ the identity

H(v2) − H(v1) = Im

[
(v2 − v1)

(
F

(
1

2
(v1 + v2)

))2]

holds (and so H = Im
∫ δ

(F (z))2 dδz on both � and �∗);
(iii) H is (discrete) subharmonic on � and superharmonic on �∗, i.e.,

[�δH ](u) ≥ 0 and [�δH ](w) ≤ 0

for all u ∈ Int	δ
� ⊂ � and w ∈ Int	δ

�∗ ⊂ �∗;
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Proof (i), (ii) Let z be the center of the rhombus u1w1u2w2. For j = 1,2 we
have

[H(u2) − H(wj )] + [H(wj ) − H(u1)]
= 2|Re[[i(wj − u2)]1/2F(z)]|2 − 2|Re[[i(wj − u1)]1/2F(z)]|2

= 1

2
[[i(wj − u2)]1/2F(z) + [−i(wj − u2)]1/2F(z)]2

− 1

2
[[i(wj − u1)]1/2F(z) + [−i(wj − u1)]1/2F(z)]2

= 1

2
[i(u1 − u2)(F (z))2 − i(u1 − u2)(F (z))2] = Im[(u2 − u1)(F (z))2].

The computations for H(w2) − H(w1) are similar.

(iii) Let u ∈ � and set Fs := F(zs) (see Fig. 1B for notation). Denote

ts := Proj[Fs ; [i(ws − u)]− 1
2 ] = Proj[Fs−1 ; [i(ws − u)]− 1

2 ].

Knowing two projections of Fs uniquely determines it’s value:

Fs = i(tse
−iθs − ts+1e

iθs )

sin θs

and so

μδ
�(u) · [�δH ](u)

= − Im

[
n∑

s=1

tan θs · (tse
−iθs − ts+1e

iθs )2 · (us − u)

sin2 θs

]

= −2δ · Im

[
n∑

s=1

(t2
s e−2iθs − 2ts ts+1 + t2

s+1e
2iθs ) · ei arg(us−u)

sin θs

]

.

Let ts = xs · exp[i arg([i(ws − u)]− 1
2 )], where xs ∈ R and the argument of

the square root changes “continuously” when we move around u, taking s =
1, . . . , n. Then

(2δ)−1μδ
�(u) · [�δH ](u)

= − Im

[

−i

n∑

s=1

x2
s e−iθs ∓ 2xsxs+1 + x2

s+1e
iθs

sin θs

]
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=
n∑

s=1

cos θs · (x2
s + x2

s+1) ∓ 2xsxs+1

sin θs

=: Q(n)
θ1;...;θn

(x1, . . . , xn) ≥ 0,

where “∓” is “−” for all terms except xnx1 (these signs come from our choice
of arguments). The non-negativity of the quadratic form Q(n) (for arbitrary
θ1, . . . , θn > 0 with θ1 + · · · + θn = π ) can be easily shown by induction.
Indeed, the identity

Q
(n)
θ1;...;θn

(x1, . . . , xn) − Q
(n−1)
θ1;...;θn−2 ; θn−1+θn

(x1, . . . , xn−1)

= Q
(3)
π−θn−1−θn ; θn−1 ; θn

(x1, xn−1, xn),

reduces the problem to the non-negativity of Q(3)’s. But, if α,β, γ > 0 and
α + β + γ = π , then

Q
(3)
α ;β ;γ (x, y, z)

=
[

sin
1
2 β

sin
1
2 α · sin

1
2 γ

· x − sin
1
2 γ

sin
1
2 α · sin

1
2 β

· y + sin
1
2 α

sin
1
2 β · sin

1
2 γ

· z
]2

.

This finishes the proof for v = u ∈ �, the case v = w ∈ �∗ is similar. The op-
posite sign of [�δH ](w) comes from the invariance of definition (3.3) under
the (simultaneous) multiplication of F by i and the transposition of � and
�∗. �

Remark 3.7 As it was shown above, the quadratic form Q
(n)
θ1;...;θn

(x1, . . . , xn)

can be represented as a sum of n − 2 perfect squares Q(3). Thus, its kernel
is (real) two-dimensional. Clearly, this corresponds to the case when all the
(complex) values F(zs) are equal to each other, since in this case [�δH ] = 0
by definition. Thus,

δ · |[�δH ](u)| � Q
(n)
θ1;...;θn

(x1, . . . , xn) �
n∑

s=1

|F(zs+1) − F(zs)|2, (3.9)

since both sides considered as real quadratic forms in x1, . . . , xn (with coeffi-
cients of order 1) are nonnegative and have the same two-dimensional kernel.

3.4 Harnack lemma for the integral of F 2

As it was shown above, using (3.8), for any s-holomorphic function F , one
can define a function H = Im

∫ δ
(F δ(z))2 dδz on both � and �∗. Moreover,

H |� is subharmonic while H |�∗ is superharmonic. It turns out, that H , de-
spite not being a harmonic function, a priori satisfies a version of the Harnack
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Lemma (cf. Proposition A.4(i)). In Sect. 5.1 we also prove a version of the
boundary Harnack principle which compares the values of H in the bulk with
its normal derivative on a straight part of the boundary.

We start by showing that H |� and H |�∗ cannot differ too much.

Proposition 3.8 Let w ∈ Int	δ
�∗ be an inner face surrounded by inner ver-

tices us ∈ Int	δ
� and faces ws ∈ 	δ

�∗ , s = 1, . . . , n. If H is defined by (3.8)
for some s-holomorphic function F : 	δ♦ → C, then

max
s=1,...,n

H(us) − H(w) ≤ const ·
(
H(w) − min

s=1,...,n
H(ws)

)
.

Remark 3.9 Since definition (3.3) is invariant under the (simultaneous) mul-
tiplication of F by i and the transposition of � and �∗, one also has

H(u) − min
s=1,...,n

H(ws) ≤ const ·
(

max
s=1,...,n

H(us) − H(u)
)

for any inner vertex u ∈ Int	δ
� surrounded by ws ∈ Int	δ

�∗ and us ∈ 	δ
� ,

s = 1, . . . , n.

Proof By subtracting a constant, we may assume that mins=1,...,n H(ws) = 0.
Since H |�∗ is superharmonic at w, it is non-negative there and moreover

H(w) ≥ const ·H(ws) for all s = 1, . . . , n.

Since H |�(ws) ≥ 0, by (3.8), it is non-negative at all points of � which are
neighbors of ws ’s. From subharmonicity of H |� we similarly deduce that
H(us) ≤ const ·H(us+1). Therefore,

H(us) � M := max
s=1,...,n

H(us) for all s = 1, . . . , n.

We need to prove that K := M/H(w) ≤ const. Assume the opposite, i.e.
K � 1. Then, for any s = 1, . . . , n, one has

H(us) − H(ws)

H(us) − H(w)
= 1 + O(K−1).

By (3.8), these increments of H are derived from projections of F(zs) on two
directions, and so

|Proj[F(zs); [i(ws − us)]− 1
2 ]|

|Proj[F(zs); [i(w − us)]− 1
2 ]|

= 1 + O(K−1).
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Here zs is a center of the rhombus wuswsus+1, and we infer

argF(zs) mod π = [
either arg[(ws −w)−

1
2 ] or arg[(w−ws)

− 1
2 ]]+O(K−1).

Moreover, δ · |F(zs)|2 � H(us) − H(w) � M for all s = 1, . . . , n, if K is big
enough. Since F(zs) and F(zs+1) have very different arguments, using (3.9)
we obtain

M � δ ·
n∑

s=1

|F(zs+1) − F(zs)|2 � δ2 · |[�δH ](w)| ≤ const ·H(w),

which contradicts to our assumption K = M/H(w) � 1 and completes the
proof. �

Remark 3.10 (Uniform comparability of Hδ
� and Hδ

�∗) Suppose H |�∗ ≥ 0 on
∂	δ

�∗ and hence, due to its superharmonicity, everywhere inside 	δ
�∗ . Then,

definition (3.8) and Proposition 3.8 give

Hδ
�∗(w) ≤ Hδ

�(u) ≤ const ·Hδ
�∗(w)

for all neighboring u ∼ w in 	δ , where the constant is independent of 	δ

and δ.

Proposition 3.11 (Harnack Lemma for Im
∫ δ

(F (z))2dδz) Take v0 ∈ � = �∪
�∗ and let F : Bδ♦(v0,R) → C be an s-holomorphic function. Define

H := Im
∫ δ

(F (z))2dδz : 	δ
� → R

by (3.8) so that H ≥ 0 in Bδ
�(v0,R). Then,

H(v1) ≤ const ·H(v0) for any v1 ∈ Bδ
�

(
v0,

1

2
r

)
.

Proof Due to Remark 3.10, we may assume that v0 ∈ �∗ while v1 ∈ �. Set
M := max

u∈Bδ
�(v0,

1
2 r)

H(u). Since the function H |� is subharmonic, one has

M = H(v1) ≤ H(v2) ≤ H(v3) ≤ · · ·
for some path of consecutive neighbors Kδ

� = {v1 ∼ v2 ∼ v3 ∼ · · · } ⊂ � run-
ning from v1 to the boundary ∂Bδ

�(v0,R). Take a nearby path of consecutive
neighbors Kδ

�∗ = {wδ
1 ∼ wδ

2 ∼ wδ
3 ∼ · · · } ⊂ �∗ starting in ∂Bδ

�∗(v0,
1
2R) and

running to ∂Bδ
�∗(v0,R). By Remark 3.10, H |�∗ ≥ const ·M on Kδ

�∗ , and so

H(v0) ≥ const ·M · ωδ(v0;Kδ
�∗;Bδ

�∗(v0,R) \ Kδ
�∗) ≥ const ·M,
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since H |�∗ is superharmonic and the discrete harmonic measure of the path
Kδ

�∗ viewed from v0 is uniformly bounded from below due to standard ran-
dom walk arguments (cf. [10] Proposition 2.11). �

3.5 Regularity of s-holomorphic functions

Theorem 3.12 For a simply connected 	δ♦ and an s-holomorphic F : 	δ♦ →
C define H = ∫ δ

(F (z))2 dδz : 	δ
� → C by (3.8) in accordance with Propo-

sition 3.6. Let point z0 ∈ Int	δ♦ be at definite distance from the boundary:
d = dist(z0; ∂	δ♦) ≥ const ·δ and set M = maxv∈	δ

�
|H(v)|. Then

|F(z0)| ≤ const ·M
1/2

d1/2
(3.10)

and, for any neighboring z1 ∼ z0,

|F(z1) − F(z0)| ≤ const ·M
1/2

d3/2
· δ. (3.11)

Remark 3.13 Estimates (3.10) and (3.11) have exactly the same form as if
H was harmonic. Due to (3.8) and (3.9), a posteriori this also means that the
subharmonic function H |� and the superharmonic function H |�∗ should be
uniformly close to each other inside 	δ , namely H |� − H |�∗ = O(δM/d),
and, moreover, |�δH | = O(δM/d3).

The proof consists of four steps:
Step 1. Let Bδ

�(z0; r) ⊂ � denote the discrete disc centered at z0 of radius r .
Then the discrete L1 norm (as defined below) of the Laplacian of H satisfies

‖�δH‖1 ;Bδ
�(z0; 3

4 d)
:=

∑

u∈Bδ
�(z0; 3

4 d)
|[�δH ](u)|μδ

�(u) ≤ const ·M (3.12)

and the same estimate for H restricted to �∗ holds.

Proof of Step 1 Represent H on Bδ
�(z0;d) as a sum of a harmonic function

with the same boundary values and a subharmonic one:

H |� = Hharm + Hsub, �δHharm = 0, �δHsub ≥ 0 in Bδ
�(z0;d)

and

Hharm = H, Hsub = 0 on ∂Bδ
�(z0;d).

Note that the negative function Hsub satisfies

Hsub(·) =
∑

u∈IntBδ
�(z0;d)

G(· ;u)[�δHsub](u)μδ
�(u)
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≤
∑

u∈Bδ
�(z0; 3

4 d)

G(· ;u)[�δHsub](u)μδ
�(u),

since the Green’s function G(· ;u) in Bδ
�(z0;d) is negative. By the maximum

principle, |Hharm| ≤ M and so |Hsub| ≤ 2M in Bδ
�(z0;d). Therefore,

const ·Md2 ≥ ‖Hsub‖1 ;Bδ
�(z0;d)

≥ ‖�δHsub‖1 ;Bδ
�(z0; 3

4 d)
· min
u∈Bδ

�(z0; 3
4 d)

‖G(· ;u)‖1 ;Bδ
�(z0;d).

Since �δHsub = �δH , the inequality (3.12) follows from the (uniform) esti-
mate

‖G(· ;u)‖1 ;Bδ
�(z0;d) ≥ const ·d2 for all u ∈ Bδ

�

(
z0; 3

4
d

)

which we prove in Appendix (Lemma A.8). �

Step 2. The estimate

‖F‖2
2 ;Bδ♦(z0; 1

2 d)
:=

∑

z∈Bδ♦(z0; 1
2 d)

|F(z)|2μδ♦(z) ≤ const ·Md (3.13)

holds.

Proof of Step 2 Since H = Im
∫ δ

(F (z))2 dδz on both � and �∗, it is sufficient
to prove

‖∂δ[H |�]‖1 ;Bδ♦(z0; 1
2 d)

≤ const ·Md

and a similar estimate for ∂δ[H |�∗] . Represent H on Bδ
�(z0; 3

4d) as a sum:

H |� = Hharm + Hsub, �δHharm = 0, �δHsub ≥ 0 in Bδ
�

(
z0; 3

4
d

)

and

Hharm = H, Hsub = 0 on ∂Bδ
�

(
z0; 3

4
d

)
.

It follows from the discrete Harnack’s Lemma (see Corollary A.5) and the
estimate |Hharm| ≤ M that

|∂δHharm(z)| ≤ const ·M/d
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for all z ∈ Bδ
�(z0; 1

2d) and hence

‖∂δHharm‖1 ;Bδ♦(z0; 1
2 d)

≤ const ·Md.

Furthermore,

[∂δHsub](z) =
∑

u∈IntBδ
�(z0; 3

4 d)

[∂δG](z ;u)[�δH ](u)μδ
�(u),

where G(· ;u) ≤ 0 denotes the Green’s function in Bδ
�(z0; 3

4d). We infer that

‖∂δHsub‖1 ;Bδ♦(z0; 1
2 d)

≤ ‖�δH‖1 ;Bδ
�(z0; 3

4 d)
· max
u∈IntBδ

�(z0; 3
4 d)

‖[∂δG](· ;u)‖1 ;Bδ♦(z0; 1
2 d)

.

The first factor is bounded by const ·M (Step 1) and the second, as in the
continuous setup, is bounded by const ·d (see Lemma A.9), which concludes
the proof. �

Step 3. The uniform estimate

|F(z)| ≤ const ·M
1/2

d1/2
(3.14)

holds for all z ∈ Bδ♦(z0; 1
4d).

Proof of Step 3 Applying the Cauchy formula (see Lemma A.6(i)), to the
discs

Bδ♦(z;5δk) ⊂ Bδ♦
(

z0; 1

2
d

)
, k : 1

8
d < 5δk <

1

4
d, k ∈ Z,

whose boundaries don’t intersect each other and summing over all such k, we
estimate

d

δ
· |F(z)| ≤ const

d
·
‖F‖1 ;Bδ♦(z0; 1

2 d)

δ
.

Thus, by the Cauchy-Schwarz inequality and (3.13)

|F(z)| ≤ const

d2
· ‖F‖1 ;Bδ♦(z0; 1

2 d)
≤ const

d
· ‖F‖2 ;Bδ♦(z0; 1

2 d)
≤ const ·M

1/2

d1/2
.

�
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Step 4. The estimate

|F(z1) − F(z0)| ≤ const ·M
1/2

d3/2
· δ (3.15)

holds for all z1 ∼ z0.

Proof of Step 4 It follows from the discrete Cauchy formula (see Lemma
A.6(ii)) applied to the disc Bδ♦(z0; 1

4d) and Step 3 for its boundary that there
exist A,B ∈ C such that, for any neighboring z1 ∼ z0 (see Fig. 1C for nota-
tion), we have for both points the identity

F(z0,1) = Proj[A ; u0,1 − u] + Proj[B ; w0,2 − w1] + O(ε)

= A + Proj[B − A ; w0,2 − w1] + O(ε),

where

ε =
max

z∈∂Bδ♦(z0; 1
4 d)

|F(z)| · δ
d

≤ M1/2 · δ
d3/2

.

The definition of an s-holomorphic function stipulates that

Proj[F(z0) − F(z1); [i(w1 − u)]− 1
2 ] = 0

(for all z1 ∼ z0), which implies B − A = O(ε), and hence F(zi) = A + O(ε)

for i = 0,1. �

3.6 The “(τ (z))− 1
2 ” boundary condition and the “boundary modification

trick”

Throughout the paper, we often deal with s-holomorphic in 	δ♦ functions Fδ

satisfying the Riemann boundary condition

F(ζ ) ‖ (τ (z))−
1
2 (3.16)

on, say, the “white” boundary arc Lδ
�∗ ⊂ ∂	δ♦ (see Fig. 7A), where τ(z) :=

w2(z) − w1(z) is the “discrete tangent vector” to ∂	δ♦ at ζ . Being s-
holomorphic, these functions possess discrete primitives

Hδ := Im
∫ δ

(F δ(z))2 dδz.

Due to the boundary condition (3.16), an additive constant can be fixed so
that

Hδ
�∗ = 0 on Lδ

�∗ .
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Fig. 7 “Boundary modification trick”: (A) local modification of the boundary; (B) FK-Ising
model: example of a modified domain; (C) spin-Ising model: example of a modified domain

The boundary condition for Hδ
� is more complicated. Fortunately, one can

reformulate it exactly in the same way, using the following “boundary modi-
fication trick”:

For each half-rhombus uintw1w2 touching the boundary arc Lδ
�∗ , we draw

two new rhombi uintw1ũ1w̃ and uintw̃ũ2w2 so that the corresponding an-
gles θ̃1 = θ̃2 are equal to 1

2θ (see Fig. 7A).

In general, these new edges (uintũ1,2) constructed for neighboring inner ver-
tices uint, may intersect each other but it is not important for us (one can
resolve the problem of a locally self-overlapping domain by placing it on a
Riemann surface).

Lemma 3.14 Let uintw1w2 be the half-rhombus touching Lδ
�∗ and ζ =

1
2(w2 + w1). Suppose that the function Fδ is s-holomorphic in 	δ♦ and

Fδ(ζ ) ‖ (w2 − w1)
− 1

2 . Then, if we set

Hδ
�(̃u2) = Hδ

�(̃u1) := Hδ
�∗(w2) = Hδ

�∗(w1),

the function Hδ
� remains subharmonic at uint.
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Proof Definition (3.8) says that

Hδ
�(uint) − Hδ

�∗(w1,2) = 2δ|Proj[Fδ(ζ ) ; [i(w1,2 − uint)]− 1
2 ]|2

= 2δ cos2 θ

2
· |Fδ(ζ )|2

because i(w1,2 − uint) has the same direction as e∓iθ (w2 − w1) and Fδ(ζ ) ‖
(w2 − w1)

− 1
2 . Therefore

2 tan
θ

2
· (Hδ

�(̃u1,2) − Hδ
�(uint)) = −2δ sin θ · |Fδ(ζ )|2

and, if u denotes the fourth vertex of the rhombus uintw1uw2,

tan θ · (Hδ
�(u) − Hδ

�(uint)) = tan θ · Im[(F δ(ζ ))2(u − uint)]
= −2δ sin θ · |Fδ(ζ )|2.

Thus, the standard definition of Hδ
� at u and the new definition at ũ1,2 give

the same contributions to the (unnormalized) discrete Laplacian at uint (see
(3.1)). �

Remark 3.15 After this trick, an additive constant in the definition of Hδ can
be chosen so that both

Hδ
�∗ = 0 on Lδ

�∗ and Hδ
� = 0 on L̃δ

�,

where Lδ
�̃

denotes the set of newly constructed “black” vertices near Lδ
�∗ .

4 Uniform convergence for the holomorphic observable in the FK-Ising
model

Recall that the discrete holomorphic fermion Fδ(z) = Fδ
(	δ;aδ,bδ)

(z) con-
structed in Sect. 2.1 satisfies the following discrete boundary value problem:

(A) Holomorphicity: Fδ(z) is s-holomorphic in 	δ♦.

(B) Boundary conditions: Fδ(ζ ) ‖ (τ (ζ ))− 1
2 for ζ ∈ ∂	δ♦, where

τ(ζ ) = w2(ζ ) − w1(ζ ), ζ ∈ (aδbδ), w1,2(ζ ) ∈ �∗,

τ (ζ ) = u2(ζ ) − u1(ζ ), ζ ∈ (bδaδ), u1,2(ζ ) ∈ �,
(4.1)

is the “discrete tangent vector” to ∂	δ♦ directed from aδ to bδ on both
arcs (see Fig. 2B).
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(C) Normalization at bδ : Fδ(bδ) = ReFδ(bδ♦) = (2δ)− 1
2 .

Remark 4.1 For each discrete domain (	δ♦;aδ, bδ), the discrete boundary
value problem (A)&(B)&(C) has a unique solution.

Proof Existence of the solution is given by the explicit construction of the
holomorphic fermion in the FK-Ising model. Concerning uniqueness, let Fδ

1
and Fδ

2 denote two different solutions. Then the difference Fδ := Fδ
1 − Fδ

2

is s-holomorphic in 	δ♦, thus Hδ := Im
∫ δ

(F δ(z))2 dδz is well-defined (see
Sect. 3.3, especially (3.8)). Due to condition (B), Hδ is constant on both
boundary arcs (aδbδ) ⊂ �∗ and (bδaδ) ⊂ �. Moreover, in view of the same
normalization of Fδ

1,2 near bδ , one can fix an additive constant so that Hδ
�∗ = 0

on (aδbδ) and Hδ
� = 0 on (bδaδ).

The “boundary modification trick” described in Sect. 3.6 provides us the
slight modification of 	δ♦ (see Fig. 7B) such that the Dirichlet boundary con-
ditions Hδ

� = 0, Hδ
�∗ = 0 hold true everywhere on ∂	δ

�. Using sub-/super-
harmonicity of Hδ on �/�∗ and (3.8), we arrive at 0 ≥ Hδ

� ≥ Hδ
�∗ ≥ 0 in 	δ .

Thus, Hδ ≡ 0 and Fδ
1 ≡ Fδ

2 . �

Let

Hδ = Hδ
(	δ;aδ,bδ)

:= Im
∫ δ

(F δ
(	δ;aδ,bδ)

(z))2 dδz. (4.2)

It follows from the boundary conditions (B) that Hδ is constant on both
boundary arcs (aδbδ) ⊂ �∗ and (bδaδ) ⊂ �. In view of the chosen normal-
ization (C), we have

Hδ
�|(bδaδ) − Hδ

�∗ |(aδbδ) = 1.

Remark 4.2 Due to the “boundary modification trick” (Sect. 3.6), one can fix
an additive constant so that

Hδ
� = 0 on (aδbδ)�̃, Hδ

�∗ = 0 on (aδbδ),

Hδ
� = 1 on (bδaδ), Hδ

�∗ = 1 on (bδaδ)�̃∗,
(4.3)

where (aδbδ)�̃ (and, in the same way, (bδaδ)�̃∗) denotes the set of newly con-
structed “black” vertices near the “white” boundary arc (aδbδ) (see Fig. 7B).

Let f δ(z) = f δ
(	δ;aδ,bδ)

(z) denote the solution of the corresponding contin-

uous boundary value problem inside the polygonal domain 	δ :

(a) holomorphicity: f δ is holomorphic in 	δ ;
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(b) boundary conditions: f δ(ζ ) ‖ (τ (ζ ))− 1
2 for ζ ∈ ∂	δ , where τ(ζ ) denotes

the tangent vector to ∂	δ oriented from aδ to bδ (on both arcs);
(c) normalization: the function hδ = hδ

	δ,aδ,bδ := Im
∫
(f δ(ζ ))2dζ is uni-

formly bounded in 	δ and

hδ|(aδbδ) = 0, hδ|(bδaδ) = 1.

Note that (a) and (b) guarantee that hδ is harmonic in 	δ and constant on both
boundary arcs (aδbδ), (bδaδ). In other words,

f δ =
√

2i∂hδ, hδ = ω(· ;bδaδ;	δ),

where ω denotes the (continuous) harmonic measure in the (polygonal) do-
main 	δ . Note that ∂hδ �= 0 in 	δ , since hδ is the imaginary part of the con-
formal mapping from 	δ onto the infinite strip (−∞,∞)× (0,1) sending aδ

and bδ to ∓∞, respectively. Thus, f δ is well-defined (up to the sign).

Theorem 4.3 (convergence of FK-observable) The solutions Fδ of the dis-
crete Riemann-Hilbert boundary value problems (A)&(B)&(C) are uniformly
close in the bulk to their continuous counterpart f δ defined by (a)&(b)&(c).
Namely, for all 0 < r < R there exists ε(δ) = ε(δ, r,R) such that for all dis-
crete domains (	δ♦;aδ, bδ) and zδ ∈ 	δ♦ the following holds true:

if B(zδ, r) ⊂ 	δ ⊂ B(zδ,R), then |Fδ(zδ) − f δ(zδ)| ≤ ε(δ) → 0

as δ → 0

(for a proper choice of f δ’s sign), uniformly with respect to the shape of 	δ

and ♦δ .

Remark 4.4 Moreover, the sign of f δ is the same for, at least, all z̃δ lying in
the same connected component of the r-interior of 	δ .

Proof Assume that neither f δ nor −f δ approximates Fδ well, and so for both
signs |Fδ(zδ) ± f δ(zδ)| ≥ ε0 > 0 for some sequence of domains 	δ , δ → 0.
Applying translations one can without loss of generality assume zδ = 0 for
all δ’s. The set of all simply-connected domains 	 : B(0, r) ⊂ 	 ⊂ B(0,R)

is compact in the Carathéodory topology (of convergence of conformal maps
germs). Thus, passing to a subsequence, we may assume that

(	δ;aδ, bδ)
Cara−→(	;a, b) as δ → 0

(with respect to 0 = zδ). Let h = h(	;a,b) := ω( · ;ba;	). Note that hδ ⇒ h

as δ → 0, uniformly on compact subsets of 	, since the harmonic measure is
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Carathéodory stable. Moreover,

(f δ)2 = 2i∂hδ ⇒ f 2 = 2i∂h as δ → 0.

We are going to prove that, at the same time,

Hδ ⇒ h and (F δ)2 ⇒ f 2 as δ → 0,

uniformly on compact subsets of 	, which gives a contradiction.
It easily follows from (4.3) and the sub-/super-harmonicity of Hδ on �/�∗

that

0 ≤ Hδ ≤ 1 everywhere in 	δ
�.

In view of Theorem 3.12, this (trivial) uniform bound implies the uniform
boundedness and the equicontinuity of functions Fδ on compact subsets K

of 	. Thus, both {Hδ} and {Fδ} are normal families on each compact subset
of 	. Therefore, taking a subsequence, we may assume that

Fδ ⇒ F and Hδ ⇒ H for some F : 	 → C, H : 	 → R,

uniformly on all compact subsets of 	. The simple passage to the limit in
(4.2) gives

H(v2) − H(v1) = Im
∫

[v1;v2]
(F (ζ ))2 dζ,

for each segment [v1;v2] ⊂ 	. Thus, F 2 = 2i∂H . Being a limit of discrete
subharmonic functions Hδ

� , as well as discrete superharmonic functions Hδ
�∗ ,

the function H should be harmonic. The sub-/super-harmonicity of Hδ on
�/�∗ gives

ωδ( · ; (bδaδ)�̃∗;	δ
�∗) ≤ Hδ

�∗ ≤ Hδ
� ≤ ωδ( · ; (bδaδ)�;	δ

�) in 	δ
�,

where the middle inequality holds for any pair of neighbors w ∈ �∗, u ∈ �

due to (3.8). It is known (see [10] Theorem 3.12) that both discrete harmonic
measures ωδ(·) (as on �∗, as on �) are uniformly close in the bulk to the con-
tinuous harmonic measure ω(·) = h. Thus, Hδ ⇒ h uniformly on compact
subsets of 	, and so F 2 = 2i∂h. �

Proof of Remark 4.4 Consider simply-connected domains (	δ;aδ, bδ; zδ, z̃δ),
with zδ, z̃δ lying in the same connected components of the r-interiors 	δ

r . As-
sume that we have |Fδ(zδ) − f δ(zδ)| → 0 but |Fδ(̃zδ) + f δ(̃zδ)| → 0 as
δ → 0. Applying translations to 	δ and taking a subsequence, we may as-
sume that

(	δ;aδ, bδ; z̃δ)
Cara−→(	;a, b; z̃) w.r.t. 0 = zδ,
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for some z̃ connected with 0 inside the r-interior 	r of 	. As it was shown
above,

Fδ ⇒ F and f δ ⇒ f uniformly on 	r,

where either F ≡ f or F ≡ −f (everywhere in 	), which gives a contradic-
tion. �

5 Uniform convergence for the holomorphic observable in the
spin-Ising model

For the spin-Ising model, the discrete holomorphic fermion Fδ(z) =
Fδ

(	δ;aδ,bδ)
(z) constructed in Sect. 2.2 satisfies the following discrete bound-

ary value problem:

(A◦) Holomorphicity: Fδ(z) is s-holomorphic inside 	δ♦.

(B◦) Boundary conditions: Fδ(ζ ) ‖ (τ (ζ ))− 1
2 for all ζ ∈ ∂	δ♦ except at aδ ,

where τ(ζ ) = w2(ζ ) − w1(ζ ) is the “discrete tangent vector” to ∂	δ♦
oriented in the counterclockwise direction (see Fig. 4A).

(C◦) Normalization at bδ : Fδ(bδ) = F δ(bδ), where the normalizing con-

stants F δ(bδ) ‖ (τ (bδ))− 1
2 are defined in Sect. 5.1.

Remark 5.1 For each discrete domain (	δ♦;aδ, bδ), the discrete boundary
value problem (A◦)&(B◦)&(C◦) has a unique solution.

Proof Existence is given by the holomorphic fermion in the spin-Ising
model. Concerning uniqueness, let Fδ denote some solution. Then Hδ =∫ δ

(F δ(z))2 dδz is constant on ∂	δ
�∗ , so either Fδ(aδ) ‖ (τ (aδ))−1/2 or

Fδ(aδ) ‖ (−τ(aδ))−1/2. In the former case, using the “boundary modification
trick” (Sect. 3.6), we arrive at Hδ = 0 on both ∂	δ

�∗ and ∂	δ
�̃

. Then, sub-

/super-harmonicity of Hδ on �/�∗ and (3.8) imply that 0 ≥ Hδ
� ≥ Hδ

�∗ ≥ 0
in 	δ . Therefore, Hδ ≡ 0 and Fδ ≡ 0, which is impossible. Thus, Fδ(aδ) ‖
(−τ(aδ))−1/2 (for the holomorphic fermion this follows from the definition).

Let F1,2 be two different solutions. Denote

Fδ(z) := (−τ(aδ))
1
2 · [Fδ

1 (aδ)F δ
2 (z) − Fδ

2 (aδ)F δ
1 (z)].

Then, Fδ is s-holomorphic and, since (−τ(aδ))
1
2 Fδ

1,2(a
δ) ∈ R, satisfies the

boundary condition (B◦) on ∂	δ \ {aδ}. Moreover, we also have Fδ(aδ) =
0 ‖ (τ (aδ))− 1

2 . Arguing as above, we obtain Fδ ≡ 0. The identity Fδ
1 ≡ Fδ

2
then follows from (C◦). �
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Let

Hδ = Hδ
(	δ;aδ,bδ)

:= Im
∫ δ

(F δ
(	δ;aδ,bδ)

(z))2 dδz.

Remark 5.2 Using Sect. 3.6, one can fix an additive constant so that

Hδ
�∗ = 0 everywhere on ∂	δ

�∗

Hδ
� = 0 everywhere on ∂	δ

�̃
except aδ

out,
(5.1)

where ∂	δ
�̃

denotes the modified boundary (everywhere except aδ) and aδ
out is

the original outward “black” vertex near aδ (see Fig. 7C). Then, Hδ
� ≥ Hδ

�∗ ≥
0 everywhere in 	δ .

5.1 Boundary Harnack principle and solution to (A◦)&(B◦) in the discrete
half-plane

We start with a version of the Harnack Lemma (Proposition 3.11) which
compares the values of Hδ = Im

∫ δ
(F δ)2(z) dδz in the bulk with its normal

derivative at the boundary.
Let R(s, t) := (−s; s) × (0; t) ⊂ C be an open rectangle, Rδ♦(s, t) ⊂ �

denote its discretization, and Lδ(s), Uδ(s, t) and V δ(s, t) be the lower, upper
and vertical parts of the boundary ∂Rδ

� (see Fig. 8A).

Proposition 5.3 Let t ≥ δ, Fδ be an s-holomorphic function in a discrete
rectangle Rδ♦(2t,2t) satisfying the boundary condition (B◦) on the lower

boundary Lδ♦(2t) and Hδ = Im
∫ δ

(F δ(z))2 dδz be defined by (3.8) so that

H = 0 on Lδ
�∗ and H ≥ 0 everywhere in Rδ

�∗(2t,2t). Let bδ ∈ ♦ be the
boundary vertex closest to 0, and cδ ∈ �∗ denote the inner face (dual ver-
tex) containing the point c = it . Then, uniformly in t and δ,

|Fδ(bδ)|2 � Hδ(cδ)

t
.

Proof Let t ≥ const ·δ (the opposite case is trivial). It follows from Re-
mark 3.10 and Proposition 3.11 that all the values of Hδ on Uδ(t, 1

2 t) are
uniformly comparable with H(cδ). Then, the superharmonicity of Hδ|�∗
and simple estimates of the discrete harmonic measure in Rδ

�∗(t, 1
2 t) (see

Lemma A.3) give

Hδ(bδ
�∗) ≥ ωδ

(
bδ
�∗;Uδ

�∗;Rδ
�∗

(
t,

1

2
t

))
· min
wδ∈Uδ

�∗
Hδ(wδ) ≥ const ·δ/t ·Hδ(cδ),
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where bδ
�∗ ∈ �∗ denotes the inner dual vertex closest to bδ (see Fig. 8A).

Therefore, |Fδ|2 ≥ const ·Hδ(cδ)/t for a neighbor of bδ . Due to the
s-holomorphicity of Fδ , this is sufficient to conclude that

|Fδ(bδ)|2 ≥ const ·Hδ(cδ)/t.

On the other hand, since H = 0 on Lδ(2t), one has Hδ ≤ const ·Hδ(cδ)

everywhere in Rδ
�(t, 1

2 t) (the proof mimics the proof of Proposition 3.11: if
Hδ(v) � Hδ(cδ) at some v ∈ Rδ

�(t, 1
2 t), then, since Hδ ≡ 0 on Lδ(2t), the

same holds true along some path running from v to Uδ(2t,2t) ∪ V δ(2t,2t),
which gives a contradiction). Thus, estimating the discrete harmonic measure
in Rδ

�(t, 1
2 t) from the inner vertex bδ

� ∈ � closest to b (see Fig. 8A), we arrive
at

Hδ(bδ
�) ≤ ωδ

(
bδ
�;Uδ

� ∪ V δ
�;Rδ

�

(
t,

1

2
t

))
· max
uδ∈Uδ

�∪Bδ
�

Hδ(uδ)

≤ const ·δ/t · Hδ(cδ).

Since Hδ(bδ
�) � δ · |Fδ(bδ)|2, this means |Fδ(bδ)|2 ≤ const ·Hδ(cδ)/t . �

Now we are able to construct a special solution F δ to the discrete boundary
value problem (A◦)&(B◦) in the discrete half-plane. The value F δ(bδ) will be
used later on for the normalization of the spin-observable at the target point
bδ .

Theorem 5.4 Let H
δ denote some discretization of the upper half-plane (see

Fig. 8A). Then, there exist a unique s-holomorphic function F δ : H
δ♦ → C

satisfying boundary conditions F δ(ζ ) ‖ (τ (ζ ))− 1
2 for ζ ∈ ∂H

δ♦, such that

F δ(z) = 1 + O(δ
1
2 · (Im z)−

1
2 ),

uniformly with respect to ♦δ . Moreover, |F δ| � 1 on the boundary ∂H
δ♦.

Remark 5.5 If ∂H
δ♦ is a straight line (e.g., for the proper oriented square or

triangular/hexagonal grids), then F δ ≡ 1 easily solves the problem.

Proof Uniqueness. Let Fδ
1 , Fδ

2 be two different solutions. Clearly, Fδ :=
Fδ

1 − Fδ
2 is s-holomorphic and satisfies the same boundary conditions on

∂H
δ♦. Thus we can set Hδ := Im

∫ δ
(F δ(z))2 dδz, where Hδ = 0 on both ∂H

δ
�∗

and ∂H
δ
�̃

(see Sect. 3.6).
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Since (F δ(z))2 = O(δ · (Im z)−1), the integration over “vertical” paths
gives

Hδ(v) = O(δ · log(δ−1 Imv)) as Imv → ∞,

so Hδ grows sublinearly as Imv → ∞ which is impossible. Indeed, using
simple estimates of the discrete harmonic measure (see Lemma A.3) in big
rectangles R(2n,n), n → ∞, and sub-/super-harmonicity of Hδ on �/�∗ to-
gether with the Dirichlet boundary conditions on the boundary ∂H

δ
�, we con-

clude that

Hδ
�(u) ≤ lim

n→∞O(δ · log(δ−1n)) · (Imu + 2δ)n−1 = 0 for any u ∈ H
δ
�,

and, similarly, Hδ
�∗(w) ≥ 0 for any w ∈ H

δ
�∗ . Thus, Hδ ≡ 0, and so Fδ

1 ≡ Fδ
2 .

Existence. We construct F δ as a (subsequential) limit of holomorphic
fermions in increasing discrete rectangles. Let δ be fixed, bδ ∈ ♦ denote the
closest to 0 boundary vertex, and Rδ

n denote discretizations (see Fig. 8A) of
the rectangles

Rn = R(4n,2n) := (−4n;4n) × (0;2n).

Let Fδ
n : Rδ

n,♦ → C be the discrete s-holomorphic fermion solving the bound-
ary value problem (A◦)&(B◦) in Rδ

n with aδ
n being the discrete approximations

of the points 2ni. For the time being, we normalize Fδ
n by the condition

|Fδ(bδ
n)| = 1.

Having this normalization, it follows from the discrete Harnack princi-
ple (Propositions 3.11 and 5.3) that Hδ

n � n everywhere near the segment
[−2n + in;2n + in]. Moreover, since H = 0 on the lower boundary, one
also has H ≤ const ·n everywhere in the smaller rectangle Rδ♦(2n,n) (the
proof mimics the proof of Proposition 3.11). Thus, estimating the discrete
harmonic measure of Uδ(2n,n)� ∪ V δ

�(2n,n) in Rδ
�(2n,n) from any fixed

vertex vδ ∈ H
δ
� and using the subharmonicity of H |� , one obtains

Hδ
n(vδ) ≤ Imvδ + 2δ

n
· const ·n ≤ const ·(Imvδ + 2δ),

if n = n(vδ) is big enough. Moreover, since Hδ|�∗ is superharmonic, one also
has the inverse estimate for vδ near the imaginary axis iR+:

Hδ
n(vδ) ≥ const ·(Imvδ + 2δ), if |Revδ| ≤ δ.

Further, Theorem 3.12 applied in (Re z − 1
2 Im z;Re z + 1

2 Im z) × (1
2 Im z;

3
2 Im z) gives |Fδ

n (zδ)| ≤ const for any zδ ∈ Hδ♦, if n = n(zδ) is big enough.
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Note that there are only countably many points vδ ∈ H
δ
� and zδ ∈ H

δ♦.
Since for any fixed vertex the values Hδ

n(vδ) and Fδ
n (zδ) are bounded, we

may choose a subsequence n = nk → ∞ so that

Hδ
n(vδ) → Hδ(vδ) and Fδ

n (zδ) → F δ(zδ)

for each vδ ∈ H
δ
� and zδ ∈ H

δ♦,

It’s clear that F δ : H
δ♦ → C is s-holomorphic, Hδ = Im

∫ δ
(F δ(z))2 dδz ≥ 0,

Hδ and F δ satisfy the same boundary conditions as Hδ
n , Fδ

n , and F δ(bδ) = 1.
Moreover,

Hδ(vδ) = O(Imvδ + 2δ), F δ(zδ) = O(1) uniformly in H
δ,

and Hδ(vδ) � (Imvδ + 2δ) for vδ near iR+. (5.2)

Now we are going to improve this estimate and show that, uniformly in
H

δ
�, Hδ(v) = μ · (Imv + O(δ)) for some μ > 0. For this purpose, we re-

scale our lattice and functions by a small factor ε → 0. Let

vεδ := εvδ, zεδ := εzδ, and Hεδ(vεδ) := εHδ(vδ),

F εδ(zεδ) := F δ(zδ).

Note that the uniform estimates (5.2) remains valid for the re-scaled func-
tions. Therefore, Theorem 3.12 guarantees that the functions Hεδ and F εδ

are uniformly bounded and equicontinuous on compact subsets of H, so, tak-
ing a subsequence, we may assume

Hεδ(v) ⇒ h(v) uniformly on compact subsets of H.

Being a limit of discrete subharmonic functions Hεδ
� as well as discrete su-

perharmonic functions Hεδ
�∗ , the function h is harmonic. Moreover, it is non-

negative and, due to (5.2), has zero boundary values everywhere on R. Thus,
h(v) ≡ μv for some μ > 0 (the case μ = 0 is excluded by the uniform double-
sided estimate of Hεδ near iR+).

Thus, for any fixed s � t > 0 one has

Hεδ ⇒ μt on [−s + it; s + it] as ε → 0.

For the original function Hδ , this means

Hδ(vδ) = (μ+ok→∞(1)) ·Imvδ uniformly on Uδ(ks, kt) as k = ε−1 → ∞.

Estimating the discrete harmonic measure in (big) rectangles Rδ(ks, kt)

from a fixed vertex vδ (see Lemma A.3) and using subharmonicity of H |�
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and superharmonicity of H |�∗ , we obtain

Hδ(vδ) =
[

Imvδ + O(δ)

kt
+ O

( |vδ| · kt

(ks)2

)]
· (μ + ok→∞(1)) · kt

+ O

( |vδ| · kt

(ks)2

)
· O(kt),

where the O-bounds are uniform in vδ , t and s, if k = k(vδ) is big enough.
Passing to the limit as k → ∞, we arrive at

Hδ(vδ) = μ · (Imvδ + O(δ)) + O(|vδ| · t2/s2),

where the O-bound is uniform in vδ and t, s. Therefore,

Hδ(vδ) = μ · (Imvδ + O(δ)) uniformly in H
δ
�.

It follows from (5.2) and Theorem 3.12 that both F δ and (F δ)2 are uni-
formly Lipschitz in each strip β ≤ Im ζ ≤ 2β with a Lipschitz constant
bounded by O(β−1). Taking some v ∈ H

δ
� near z and v′ ∈ H

δ
� such that

|v′ − v| � δ1/2(Im z)1/2, we obtain

Hδ(v′) − Hδ(v) = Im
∫ δ

[v,v′]
(F δ(ζ ))2 dδζ

= Im[(F δ(z))2(v′ − v)] + O

( |v′ − v|2
Im z

)
,

i.e., Im[(F δ(z))2(v′ − v)] = μ · Im(v′ − v) + O(δ) for all v′. Thus,

(F δ(z))2 = μ + O(δ
1
2 · (Im z)−

1
2 ) uniformly in H

δ♦.

Since F δ is Lipschitz with a Lipschitz constant bounded by O((Im z)−1) (see
above), this allows us to conclude that

±F δ(z) = μ
1
2 + O(δ

1
2 · (Im z)−

1
2 ) uniformly in H

δ♦

(for some choice of the sign). Thus, the function F̃ δ := ±μ−1/2F δ satis-
fies the declared asymptotics and boundary conditions. Moreover, |F̃ δ(bδ)| =
μ−1/2 � 1. Since such a function F̃ δ is unique, all other values |F̃ δ| on the
boundary ∂H

δ♦ are � 1 too. �
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Fig. 8 (A) Discretizations of the upper half-plane H and the rectangle
R(s, t) = (−s; s) × (0; t). Boundary points aδ, bδ ∈ ♦ approximate the points i t and
0, while cδ ∈ �∗ approximate the center 1

2 it . We denote by Lδ(s), Uδ(s, t) and V δ(s, t)

the lower, upper and vertical parts of ∂Rδ(s, t), respectively. (B) To perform the passage
to the limit under the normalization condition at bδ , we assume that 	δ♦ ⊃ Rδ♦(s, t) and

∂	δ♦ \ {aδ} ⊃ Lδ♦(s). For δ small enough, the discrete harmonic measure from cδ of any path

Kδ = Kδ
3d

going from 	δ
3d

to aδ is uniformly bounded from below. We can similarly use any

point dδ lying on the “straight” part of the boundary for the (different) normalization of the
observable

5.2 Main convergence theorem

To handle the normalization at bδ of our discrete observable, from now on we
assume that, for some s, t > 0,

	δ♦ contains the discrete rectangle Rδ♦(s, t),

∂	δ♦ \ {aδ} contains the lower side Lδ♦(s) of Rδ♦(s, t),

and bδ is the closest to 0 vertex of ∂	δ♦ (see Fig. 8).

(5.3)

Some assumption of a kind is certainly necessary: one can imagine continu-
ous domain with such an irregular approach to b, that any approximation is
forced to have many “bottlenecks,” ruining the estimates.

Let f δ(z) = f δ
(	δ;aδ,bδ)

(z) denote the solution of the following boundary

value problem inside the polygonal domain 	̃δ (here the tilde means that
we slightly modify the original polygonal domain 	δ near bδ , replacing the
polyline Lδ(s) by the straight real segment [−s; s], cf. [10] Theorem 3.20):

(a◦) holomorphicity: f δ is holomorphic in 	̃δ ;

(b◦) boundary conditions: f δ(ζ ) ‖ (τ (ζ ))− 1
2 for ζ ∈ ∂	̃δ , where τ(ζ ) is the

tangent to ∂	̃δ vector oriented in the counterclockwise direction, f δ is
bounded away from aδ ;
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(c◦) normalization: the function hδ = hδ
	δ,aδ,bδ := Im

∫
(f δ(ζ ))2 dζ is non-

negative in 	̃δ , bounded away from aδ , and

f δ(0) = [∂yh
δ(0)]1/2 = 1.

As in Sect. 4, (a◦) and (b◦) guarantee that hδ is harmonic in 	δ and constant
on ∂	̃δ . Thus,

f δ =
√

2i∂hδ, where hδ = P(	δ;aδ,0),

is the Poisson kernel in 	δ having mass at aδ and normalized at 0. In other
words, hδ is the imaginary part of the conformal mapping (normalized at 0)
from 	δ onto the upper half-plane H sending aδ and 0 to ∞ and 0, respec-
tively. Note that ∂hδ �= 0 everywhere in 	δ , thus f δ is well-defined in 	δ up
to a sign, which is fixed by f δ(0) = +1.

Theorem 5.6 (convergence of the spin-observable) The discrete solutions
of the Riemann-Hilbert boundary value problems (A◦)&(B◦)&(C◦) are uni-
formly close in the bulk to their continuous counterparts f δ , defined by
(a◦)&(b◦)&(c◦). Namely, there exists ε(δ) = ε(δ, r,R, s, t) such that for all
discrete domains (	δ♦;aδ, bδ) ⊂ B(0,R) satisfying (5.3) and for all zδ ∈ 	δ♦
lying in the same connected component of the r-interior of 	δ as the neigh-
borhood of bδ (see Fig. 8) the following holds true:

|Fδ(zδ) − f δ(zδ)| ≤ ε(δ) → 0 as δ → 0

(uniformly with respect to the shape of 	δ and the structure of ♦δ).

Moreover, it is easy to conclude from this theorem that the convergence
also should hold true at any boundary point dδ such that ∂	δ♦ has a “straight”
part near dδ . Namely, as in (5.3), let (see Fig. 8B)

dδ ∈ ∂	δ♦ be a boundary point, the boundary ∂	δ♦ is “straight” near dδ

and oriented in the (macroscopic) direction τd : |τd | = 1, i.e.,
	δ♦ contains the discretization R̃δ♦(̃s, t̃) of the rectangle d +τd ·R(̃s, t̃) and

∂	δ♦\{aδ} contains the discretization L̃δ♦(̃s) of the segment d +τd · [−̃s; s̃].
Further, let F̃ δ denotes the solution of the boundary value problem (A◦)&(B◦)
in the discrete half-plane (d + τd · H)♦ which is asymptotically equal to
(τd)−1/2 (again, F̃ ≡ (τd)−1/2, if one deals with, e.g., the properly oriented
square grid).

Corollary 5.7 (convergence of spin-observable on the boundary) If centers
of Rδ♦(s, t) and R̃δ♦(̃s, t̃) are connected in the r-interior of 	δ ⊂ B(0,R),
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then

|Fδ(dδ) − [(τd)1/2F̃ δ(dδ)] · f δ(d)| ≤ ε(δ) → 0 as δ → 0

(one should replace both Lδ
�∗(s) and L̃δ

�∗ (̃s) by the corresponding straight
segments to define properly the value of the “continuous” solution f δ(d) on
the boundary).

Proof of Corollary 5.7 Let cδ be a discrete approximation of the point c :=
1
2 it and c̃δ be a discrete approximation of the point c̃ := d + 1

2 iτd t̃ . It follows
from the discrete Harnack principle (Proposition 5.3 and Proposition A.4)
that

|Fδ(dδ)| � |Hδ(̃cδ)| � |Hδ(cδ)| � |Fδ(bδ)| � 1,

uniformly in 	δ and δ, if all the parameters r,R, s, t, s̃, t̃ are fixed. Denote by
F̃ δ the discrete observable Fδ renormalized at dδ :

F̃ δ := F̃ δ(dδ)

F δ(dδ)
· Fδ,

and by f̃ δ the corresponding continuous function renormalized at d:

f̃ δ := (τd)−1/2

f δ(d)
· f δ.

Again, |f δ(d)| � |hδ(̃c)| � |hδ(c)| � |f δ(0)| = 1 due to the Harnack prin-
ciple. Moreover, since hδ is equal to the imaginary part of the conformal
mapping from 	δ onto the upper half-plane, the Koebe Distortion Theorem
gives

|f δ(cδ)|2 = 2|∂hδ(cδ)| � |hδ(cδ)| � 1.

One needs to prove that the ratio

Fδ(dδ)

[(τd)1/2F̃ δ(dδ)] · f δ(d)
= Fδ

F̃ δ
· f̃ δ

f δ
= Fδ(cδ)

f δ(cδ)
· f̃ δ(cδ)

F̃ δ(cδ)

is uniformly close to 1. This follows from Theorem 5.6, since Fδ(cδ) is uni-
formly close to f δ(cδ), F̃ δ(cδ) is uniformly close to f̃ δ(cδ), and |f̃ δ(cδ)| �
|f δ(cδ)| � 1. �

Proof of Theorem 5.6 Assume that

|Fδ(zδ) − f δ(zδ)| ≥ ε0 > 0
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for some sequence of domains 	δ with δ → 0. Passing to a subsequence,
we may assume that zδ → z. The set of all simply-connected domains
B(z, r) ⊂ 	 ⊂ B(0,R) is compact in the Carathéodory topology, so, pass-
ing to a subsequence once more, we may assume that

(	δ;aδ, bδ)
Cara−→(	;a, b) with respect to zδ → z ∈ 	 as δ → 0.

Note that 	 ⊃ R(s, t) = (−s; s) × (0; t), ∂	 ⊃ [−s; s], and bδ → b = 0.
Let h = h(	;a,b) be the continuous Poisson kernel in 	 having mass at a and
normalized at 0 (i.e., the imaginary part of the properly normalized conformal
mapping from 	 onto H). Then,

hδ ⇒ h as δ → 0,

uniformly on compact subsets of 	, since this kernel can be easily constructed
as a pullback of the Poisson kernel in the unit disc. Moreover, it gives

f δ =
√

2i∂hδ ⇒ f = √
2i∂h as δ → 0

uniformly on compact subsets of 	 (here and below the sign of the square
root is chosen so that f δ(0) = f (0) = +1). We are going to prove that, at the
same time,

Hδ ⇒ h and Fδ ⇒
√

2i∂h as δ → 0.

We start with the proof of the uniform boundedness of Hδ away from aδ .
Denote by c := 1

2 it the center of the rectangle R(s, t) and by cδ ∈ �∗ the
dual vertex closest to c (see Fig. 8B). Let d > 0 be small enough and γ a

d ⊂
B(ad, 1

2d) be some crosscut in 	 separating a from c in 	. Further, let Lδ
3d ⊂

	δ ∩ ∂B(ad,3d) be an arc separating aδ from cδ in 	δ (such an arc exists,
if δ is small enough), and 	δ

3d denote the connected component of 	δ \ Lδ
3d ,

containing cδ .
The Harnack principle (Propositions 5.3 and 3.11) immediately give

Hδ(cδ) � 1 uniformly in δ,

if s and t are fixed. Let

Mδ
3d := max{Hδ

�(uδ), uδ ∈ (	δ
3d)�}.

Because of the subharmonicity of H |� , Mδ
3d = Hδ

�(uδ
0) ≤ Hδ

�(uδ
1) ≤

Hδ
�(uδ

2) ≤ · · · for some path of consecutive neighbors Kδ
� = {uδ

0 ∼ uδ
1 ∼

uδ
2 ∼ · · · } ⊂ �. Since the function Hδ

� vanishes everywhere on ∂	δ
�̃

ex-

cept aδ , this path necessarily ends at aδ . Taking on the dual graph a path
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Kδ
�∗ = {wδ

0 ∼ wδ
1 ∼ wδ

2 ∼ · · · } ⊂ �∗ close to Kδ
� , starting near uδ

0 and ending
near aδ , we deduce from Remark 3.10 that

Hδ
�∗(wδ

k) ≥ const ·Mδ
3d .

Then,

Hδ
�∗(cδ) ≥ ωδ(cδ;Kδ

�∗;	δ
�∗ \ Kδ

�∗) · const ·Mδ
3d ≥ const((	;a), d) · Mδ

3d,

since H |�∗ is superharmonic and

ωδ(cδ;Kδ
�∗;	δ

�∗ \ Kδ
�∗) ≥ 1

2
ω(cδ;Kδ

�∗;	δ \ Kδ
�∗) ≥ const((	;a), d) > 0

for all sufficiently small δ’s (see Fig. 8B and [10] Lemma 3.14).
Thus, the functions Hδ are uniformly bounded away from aδ . Due to The-

orem 3.12, we have

Fδ = O(1) uniformly on compact subsets of 	. (5.4)

Moreover, using uniform estimates of the discrete harmonic measure in rect-
angles (Lemma A.3) exactly in the same way as in the proof of Theorem 5.4,
we arrive at

Hδ(v) = O(Imv), F δ = O(1) uniformly in Rδ

(
1

2
s,

1

2
t

)
. (5.5)

Taking a subsequence, we may assume that

Fδ ⇒ F and Hδ ⇒ H for some F : 	 → C, H : 	 → R,

uniformly on all compact subsets of 	. The simple passage to the limit
in (4.2) gives H(v2) − H(v1) = Im

∫
[v1;v2](F (ζ ))2 dζ , for each segment

[v1;v2] ⊂ 	. So, F 2 = 2i∂H , and it is sufficient to show that H = P(	;a,b).
Being a limit of discrete subharmonic functions Hδ

� , as well as discrete su-
perharmonic functions Hδ

�∗ , the function H is harmonic. The next step is the
identification of the boundary values of H .

Let u ∈ 	 and d > 0 be so small that u ∈ 	δ
4d . Recall that the functions

Hδ|� are subharmonic, uniformly bounded away from aδ , and Hδ
� = 0 on

the (modified) boundary ∂	δ
�̃

, except at aδ . Thus, the weak Beurling-type
estimate of the discrete harmonic measure (Lemma A.2) easily gives

H(u) = lim
δ→0

Hδ
�(u) ≤ const(	,d) · lim

δ→0

[
dist(u ; ∂	δ

3d \ ∂Bδ
�(ad,3d))

dist	δ
�
(u ; ∂Bδ

�(ad,3d))

]β



566 D. Chelkak, S. Smirnov

≤ const(	,d) · (dist(u ; ∂	3d \ B(ad,3d))β for all u ∈ 	5d

(since, if δ is small enough, u ∈ 	δ
4d ). Thus, for each d > 0, H(u) → 0 as

u → ∂	 inside 	5d , i.e., H = 0 on ∂	 \ {a}. Clearly, H is nonnegative be-
cause Hδ are nonnegative. Therefore, H should be proportional to the Poisson
kernel in 	 having mass at a, i.e.,

H = μ2P(	;a,b) and F = μ
√

2i∂P(	;a,b) for some μ ∈ R.

Note that |μ| is uniformly bounded from ∞ and 0, since Hδ(cδ) � 1 uni-
formly in δ.

To finish the proof, we need to show that μ = 1. For each 0 < α � γ � t ,
we have

Fδ(z) ⇒ μ · (1 + O(γ )) uniformly for z ∈ [−2γ,2γ ] × [α,γ ],

as δ → 0. Recall that 	δ♦ ⊃ Rδ♦(s, t) and ∂	δ♦ ⊃ Lδ♦(s) for all δ (see (5.3)
and Fig. 8B). Set Fδ

0 := Fδ − μF δ , where the function F δ is defined in
Theorem 5.4. Then Fδ

0 is s-holomorphic in Rδ♦(s, t), satisfies the boundary
condition (B◦) on the lower boundary, and

Fδ
0 (z) ⇒ O(γ ) uniformly for z ∈ [−2γ,2γ ] × [α,γ ],

since F δ ⇒ 1. Moreover, due to (5.4), we have Fδ
0 (z) = O(1) everywhere

in the rectangle Rδ♦(1
2s, 1

2 t). Let Hδ
0 := ∫ δ

(F δ
0 (z))2 dδz, where the additive

constant is chosen so that Hδ
0 = 0 on the boundary Lδ(s). Then

Hδ
0 = O(α + γ 3) + oδ→0(1) uniformly on the boundary of Rδ

�(2γ, γ ).

Since the subharmonic function Hδ
0 |� vanishes on L̃δ

�(s), Lemma A.3 gives

Hδ
0 (bδ

int) ≤ O(δγ −1) · [O(α + γ 3) + oδ→0(1)]
= δ · O(γ −1[α + oδ→0(1)] + γ 2),

where bδ
int ∈ � denotes the inner vertex near bδ . On the other hand,

Hδ
0 (bδ

int) � δ|Fδ
0 (bδ)|2 = δ|(1 − μ)F δ(bδ)|2 � δ|1 − μ|2

which doesn’t depend on α and γ . Successively passing to the limit as δ → 0,
α → 0 and γ → 0, we obtain μ = 1. Thus, Fδ ⇒

√
2i∂P(	;a,b) as δ = δk →

0. �
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Fig. 9 (A) Discrete quadrilateral 	δ♦ with four marked boundary points and Dobrushin-type

boundary conditions. If we draw the additional external edge [cδdδ] (or [aδdδ]), there is one
interface γ δ , going from aδ (or dδ , respectively) to bδ . Since γ δ has black vertices to the left
and white vertices to the right, its winding on all boundary arcs is defined uniquely due to topo-
logical reasons. (B) Besides loops, there are two interfaces: either aδ ↔ bδ and cδ ↔ dδ , or
aδ ↔ dδ and bδ ↔ cδ . We denote the probabilities of these events by Pδ and Qδ , respectively.
(C) The external edge [cδdδ] changes the probabilities: there is one additional loop (additional
factor

√
2), if bδ is connected directly with aδ . (D) The external edge [aδdδ] changes the

probabilities differently

6 4-point crossing probability for the FK-Ising model

Let 	δ♦ ⊂ ♦ be a discrete quadrilateral, i.e. simply-connected discrete domain
composed of inner rhombi z ∈ Int	δ♦ and boundary half-rhombi ζ ∈ ∂	δ♦,
with four marked boundary points aδ, bδ, cδ, dδ and alternating Dobrushin-
type boundary conditions (see Fig. 9): ∂	δ♦ consists of two “white” arcs
aδ

wbδ
w, cδ

wdδ
w and two “black” arcs bδ

bc
δ
b, dδ

baδ
b. In the random cluster language

it means that the four arcs are wired/free/wired/free, and in the loop represen-
tation this creates two interfaces that end at the four marked points and can
connect in two possible ways. As in Sect. 2.1, we assume that bδ

b − bδ
w = iδ.

Due to Dobrushin-type boundary conditions, each configuration (besides
loops) contains two interfaces, either connecting aδ to bδ and cδ to dδ , or vice
versa. Let

Pδ = Pδ(	δ♦;aδ, bδ, cδ, dδ) := P(aδ ↔ bδ; cδ ↔ dδ)

denote the probability of the first event, and Qδ = 1 − Pδ .
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Theorem 6.1 For all r,R, t > 0 there exists ε(δ) = ε(δ, r,R, t) such that if
B(0, r) ⊂ 	δ ⊂ B(0,R) and either both ω(0;	δ;aδbδ),ω(0;	δ; cδdδ) or
both ω(0;	δ;bδcδ),ω(0;	δ;dδaδ) are ≥ t (i.e., quadrilateral 	δ has no
neighboring small arcs), then

|Pδ(	δ♦;aδ, bδ, cδ, dδ) − p(	δ;aδ, bδ, cδ, dδ)| ≤ ε(δ) → 0 as δ → 0

(uniformly with respect to the shape of 	δ and ♦δ), where p depends only on
the conformal modulus of the quadrilateral (	δ;aδ, bδ, cδ, dδ). In particular,
for u ∈ [0,1],

p(H;0,1 − u,1,∞) =
√

1 − √
1 − u

√
1 − √

u +
√

1 − √
1 − u

.

Remark 6.2 This formula is a special case of a hypergeometric formula for
crossings in a general FK model. In the Ising case it becomes algebraic and
furthermore can be rewritten in several ways. It has an especially simple form
for the crossing probabilities

p(φ) := p(D;−eiφ, e−iφ, eiφ,−e−iφ) and p

(
π

2
− φ

)
= 1 − p(φ)

in the unit disc D (clearly, the cross-ratio u is equal to sin2 φ). Namely,

p(φ)

p(π
2 − φ)

= sin φ
2

sin(π
4 − φ

2 )
for φ ∈

[
0,

π

2

]
.

Curiously, this macroscopic formula formally coincides with the relative
weights corresponding to two different possibilities of crossings inside mi-
croscopic rhombi (see Fig. 2A) in the critical FK-Ising model on isoradial
graphs.

Proof We start with adding to our picture the “external” edge connecting cδ

and dδ (see Fig. 9). Then, exactly as in Sect. 2.1, (2.2) and (2.4) allow us to
define the s-holomorphic in 	δ♦ function Fδ[cd] : 	δ♦ → C such that

Fδ[cd](ζ ) ‖ (τ (ζ ))−
1
2 (6.1)

on ∂	δ♦, where

τ(ζ ) = w2(ζ ) − w1(ζ ), ζ ∈ (aδbδ) ∪ (cδdδ), w1,2(ζ ) ∈ �∗,

τ (ζ ) = u2(ζ ) − u1(ζ ), ζ ∈ (bδcδ) ∪ (dδaδ), u1,2(ζ ) ∈ �,
(6.2)
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is the “discrete tangent vector” to ∂	δ♦ oriented from aδ/cδ to bδ/dδ (see
Fig. 9).

Note that Fδ[cd](bδ) = (2δ)− 1
2 and Fδ[cd](aδ) = (2δ)− 1

2 · e− i
2 winding(bδ�aδ),

but

Fδ[cd](dδ) = (2δ)−
1
2 · Qδ

√
2 · Pδ + Qδ

· e− i
2 winding(bδ�(cδ�dδ))

(and similarly for Fδ[cd](cδ), since the interface passes through dδ if and only

if bδ is connected with cδ , see Fig. 9).
Similarly, we can add an external edge [aδdδ] and construct another

s-holomorphic in 	δ♦ function Fδ[ad] satisfying the same boundary condi-

tions (6.1). Arguing in the same way, we deduce that Fδ[ad](bδ) = (2δ)− 1
2 ,

Fδ[ad](cδ) = (2δ)− 1
2 · e− i

2 winding(bδ�cδ), and

Fδ[ad](dδ) = (2δ)−
1
2 · Pδ

Pδ + √
2 · Qδ

· e− i
2 winding(bδ�(aδ�dδ))

(and similarly for Fδ[ad](aδ)). Note that

e− i
2 winding(bδ�(aδ�dδ)) = −e− i

2 winding(bδ�(cδ�dδ)). (6.3)

Let

Fδ := Pδ(
√

2Pδ + Qδ) · Fδ[cd] + Qδ(Pδ + √
2Qδ) · Fδ[ad]

Pδ(
√

2Pδ + Qδ) + Qδ(Pδ + √
2Qδ)

.

Then, Fδ also satisfies boundary conditions (6.1), (6.2) and, in view of (6.3),

Fδ(aδ) = (2δ)−
1
2 · Aδ · e− i

2 winding(bδ�aδ), F δ(bδ) = (2δ)−
1
2 ,

F δ(cδ) = (2δ)−
1
2 · Cδ · e− i

2 winding(bδ�cδ), F δ(dδ) = 0,

(6.4)

where

Aδ = Pδ(
√

2Pδ + Qδ) + QδPδ

Pδ(
√

2Pδ + Qδ) + Qδ(Pδ + √
2Qδ)

,

Cδ = PδQδ + Qδ(Pδ + √
2Qδ)

Pδ(
√

2Pδ + Qδ) + Qδ(Pδ + √
2Qδ)

.

Since Fδ is s-holomorphic and satisfies the boundary conditions (6.1),
(6.2), we can define Hδ := ∫ δ

(F δ(z))2 dδz and use the “boundary modifi-
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cation trick” (see Sect. 3.6). Then, (6.4) implies

Hδ
� = 0 on (aδbδ)�̃, Hδ

�∗ = 0 on (aδbδ),

Hδ
� = 1 on (bδcδ), Hδ

�∗ = 1 on (bδcδ)�̃∗, (6.5)

Hδ
� = κ

δ on (cδdδ) ∪ (dδaδ)�̃, Hδ
�∗ = κ

δ on (cδdδ)�̃∗ ∪ (dδaδ),

where

κ
δ = (Aδ)2 = 1 − (Cδ)2 =

[
(tδ)2 + √

2tδ

(tδ)2 + √
2tδ + 1

]2

, tδ = Pδ

Qδ
= Pδ

1 − Pδ
.

(6.6)
Suppose that |Pδ(	δ♦) − p(	δ)| ≥ ε0 > 0 for some domains 	δ♦ =

(	δ♦;aδ, bδ, cδ, dδ) with δ → 0. Passing to a subsequence (exactly as in
Sect. 4), we may assume that

(	δ;aδ, bδ, cδ, dδ)
Cara−→(	;a, b, c, d), κ

δ → κ ∈ [0,1],

Hδ ⇒ H, and Fδ ⇒ F = √
2i∂H,

uniformly on compact subsets, for some harmonic function H : 	 → R. It
follows from our assumptions that B(0, r) ⊂ 	 ⊂ B(0,R) and either a �= b,
c �= d or b �= c, d �= a.

We begin with the main case, when the limiting quadrilateral (	;a, b, c, d)

is non-degenerate and 0 < κ < 1. As in Sect. 4, we see that

H = 0 on (ab), H = 1 on (bc) and H = κ on (cd) ∪ (da).

(6.7)
Consider the conformal mapping � from 	 onto the slit strip [R × (0;1)] \
(iκ − ∞; iκ] such that a is mapped to “lower” −∞, b to +∞ and c to “up-
per” −∞ (note that such a mapping is uniquely defined). Then, the imaginary
part of � is harmonic and has the same boundary values as H , so we conclude
that H = Im�. We prove that

d is mapped exactly to the tip iκ.

Then, κ can be uniquely determined from the conformal modulus of
(	;a, b, c, d).

Suppose that above is not the case, and d is mapped, say, on the lower bank
of the cut. It means that H < κ near some (close to d) part of the boundary
arc (cd). Then, there exists a (small) contour C = [p;q] ∪ [q; r] ∪ [r; s] ⊂ 	

such that H < κ everywhere on C,

s,p ∈ (cd) ⊂ ∂	, dist(q; ∂	) = |q − p| and dist(r; ∂	) = |r − s|
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Fig. 10 (A) If d is mapped on the lower bank of the cut, then H < κ somewhere near (cd).
The contour C = [p;q] ∪ [q; r] ∪ [r; s] is chosen so that H < κ on C, dist(q; ∂	) = |q − p|
and dist(r; ∂	) = |r − s|. (B) Since V δ = 0 on Cδ , we have ∂δ

nV δ ≤ 0 everywhere on Cδ .
Moreover, ∂δ

nV δ ≤ const < 0 on (q̃δ r̃δ) and ∂δ
nV δ = O([dist(u; ∂	δ)]β−1) near pδ , sδ (here

∂δ
n denotes the discrete derivative in the outer normal direction)

(see Fig. 10). Denote by D ⊂ 	 the part of 	 lying inside C. For techni-
cal purposes, we also fix some intermediate points s̃, p̃ ∈ (sp) ⊂ (cd) and
q̃, r̃ ∈ [q; r] (see Fig. 10). For sufficiently small δ, we can find discrete ap-
proximations sδ, s̃δ, p̃δ,pδ ∈ (cδdδ) ⊂ ∂	δ

�̃
and qδ, q̃δ, r̃δ, rδ ∈ 	δ

� to these

points such that the contour [pδ;qδ]∪ [qδ; rδ]∪ [rδ; sδ] approximates C. De-
note by Dδ ⊂ 	δ the part of 	δ lying inside C and by Dδ

� ⊂ 	δ
� the set of all

“black” vertices lying in Dδ and their neighbors.
Let H̃ δ

� := Hδ
� − κ

δ and V δ := ωδ( · ; (̃sδp̃δ);Dδ). Since Hδ
� is subhar-

monic and V δ ≥ 0 is harmonic, the discrete Green’s formula gives

∑

u∈∂Dδ

[(H̃ δ
�(u) − H̃ δ

�(uint))V
δ(u) − (V δ(u) − V δ(uint))H̃

δ
�(u)] tan θuuint ≥ 0.

Note that H̃ δ
� ≡ 0 on (sδpδ)�̃ and V δ(u) ≡ 0 on Cδ := ∂Dδ

� \ (sδpδ)�̃ . Thus,

∑

u∈Cδ

V δ(uint)H̃
δ
�(u) tan θuuint

≥
∑

u∈(sδpδ)

(H̃ δ
�(uint) − H̃ δ

�(u))V δ(u) tan θuuint ≥ 0, (6.8)

since Hδ
�(uint) ≥ Hδ

�(u) everywhere on (sδpδ) due to the boundary condi-
tions (6.1), (6.2). On the other hand, on most of Cδ , we have H̃ δ

� < 0 (since
H − κ = limδ→0 H̃ δ

� < 0 on C by assumption), and V δ(uint) ≥ 0 everywhere
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on Cδ , which gives a contradiction. Unfortunately, we cannot immediately
claim that H̃ δ

� < 0 near the boundary, so one needs to prove that the neigh-
borhoods of pδ and sδ cannot produce an error sufficient to compensate this
difference of signs.

More accurately, it follows from the uniform convergence V δ ⇒
ω( · ; (̃sp̃);D) > 0 on compacts inside D and Lemma A.3 that V δ(uint) ≥
const(D) · δ everywhere on (̃qδr̃δ) ⊂ Cδ , so, for small enough δ,

∑

u∈(q̃δ r̃δ)

V δ(uint)H̃
δ
�(u) tan θuuint ≤ − const(D,H) < 0. (6.9)

Thus, it is sufficient to prove that the neighborhoods of pδ and sδ cannot com-
pensate this negative amount which is independent of δ. Let u ∈ (pδqδ) ⊂ Cδ

and μ = dist(u;pδ) = dist(u; ∂	δ) be small. Denote by Rδ
μ the discretization

of the μ × 1
4μ rectangle near u (see Fig. 10). Due to Lemma A.3, we have

ωδ(uint; ∂Rδ
μ \ (pδqδ);Rδ

μ) = O(δμ−1).

Furthermore, for each v ∈ ∂Rδ
μ \ (pδqδ), Lemma A.2 gives

ωδ(v; (̃sδp̃δ);Dδ) = O(μβ) uniformly on ∂Rδ
μ.

Hence,

V δ(uint) = ωδ(uint; (̃sδp̃δ);Dδ) ≤ const(D) · δμ−(1−β).

Recalling that Hδ = O(1) by definition and summing, for any pδ
μ ∈ (pδqδ) ⊂

Cδ sufficiently close to pδ we obtain

∑

u∈(pδpδ
μ)

V δ(uint)H̃
δ
�(u) tan θuuint ≤ const(D) ·

∑

u∈(pδpδ
μ)

δ · (dist(u;pδ))−(1−β)

≤ const(D) · (dist(pδ
μ;pδ))β (6.10)

(uniformly with respect to δ). The same estimate holds near sδ . Taking into

account H̃ δ
�(u) < 0 which holds true (if δ is small enough) for all u ∈ Cδ

lying μ-away from pδ , sδ , we deduce from (6.8), (6.9) and (6.10) that 0 <

const(D,H) ≤ const(D) ·μβ for any μ > 0 (and sufficiently small δ ≤ δ(μ)),
arriving at a contradiction.

All “degenerate” cases can be dealt with in the same way:

• if the quadrilateral (	;a, b, c, d) is non-degenerate, then
– if κ = 1, then H < κ near some part of (cd), which is impossible;
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– if d is mapped onto the upper bank of the slit or κ = 0, then H > κ near
some part of (ad), which leads to a contradiction via the same arguments
as above;

• if b = c (and so c �= d), then κ = 0 since otherwise H < κ everywhere
near (cd) due to boundary conditions (6.7);

• if d = a (and so c �= d , a �= b), then again κ = 0 since otherwise (6.7)
implies H < κ near some part of (cd) = (ca) close to a;

• finally, a = b or c = d lead to κ = 1 (otherwise H > κ near some part of
(da)).

Thus, d is mapped to the tip and so κ = κ(	;a, b, c, d) is uniquely deter-
mined by the conformal modulus of the quadrilateral (κ is either 0 or 1 in
degenerate cases). Recall that κ

δ = ξ(P δ), where the bijection ξ : [0,1] →
[0,1] is given by (6.6). Let

p(	;a, b, c, d) := ξ−1(κ(	;a, b, c, d)).

Then (since κ(·) is Carathéodory stable) both Pδ(	δ♦) = ξ−1(κδ) and p(	δ)

tend to p(	) = ξ−1(κ) as δ = δk → 0, which contradicts to |Pδ(	δ♦) −
p(	δ)| ≥ ε0 > 0.

Finally, the simple calculation for the half-plane (H;0,1 − u,1,∞) gives

H(z) ≡ u + 1

π
(− arg[z − (1 − u)] + u arg z + (1 − u) arg[z − 1]), z ∈ H.

Hence, κ(H;0,1 − u,1,∞) = u and p = ξ−1(u) which coincides with
(1.1). �

Remark 6.3 In fact, above we have shown that the “(τ (z))− 1
2 ” boundary con-

dition (3.16) reformulated in the form ∂δ
nHδ ≤ 0 remains valid in the limit

as δ → 0. Namely, let a sequence of discrete domains 	δ converge to some
limiting 	 in the Carathéodory topology, while s-holomorphic functions Fδ

defined on 	δ satisfy (3.16) on arcs (sδpδ) converging to some boundary arc
(sp) ⊂ ∂	. Let their integrals Hδ = Im

∫ δ
(F δ(z))2 dδz are defined so that

they are uniformly bounded near (sδpδ) and their (constant) values κ
δ on

(sδpδ) tends to some κ as δ → 0. Then, if Hδ converge to some (harmonic)
function H inside 	, one has ∂nH

δ ≤ 0 on (sp) in the following sense: there
is no point ζ ∈ (sp) such that H < κ in a neighborhood of ζ . The proof mim-
ics the corresponding part of the proof of Theorem 6.1. Since the boundary
conditions (3.16) are typical for holomorphic observables in the critical Ising
model, this statement eventually can be applied to all such observables.
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Appendix

A.1 Estimates of the discrete harmonic measure

Here we formulate uniform estimates for the discrete harmonic measure on
isoradial graphs which were used above.

Lemma A.1 (exit probabilities in the disc) Let u0 ∈ �, r ≥ δ and a ∈
∂Bδ

�(u0, r). Then,

ωδ(u0; {a};Bδ
�(u0, r)) � δ/r.

Proof See [8] (or [10] Proposition A.1). The proof is based on the asymp-
totics (A.1) of the free Green’s function. �

Lemma A.2 (weak Beurling-type estimate) There exists an absolute constant
β > 0 such that for any simply connected discrete domain 	δ

� , point u ∈
Int	δ

� and some part of the boundary E ⊂ ∂	δ
� we have

ωδ(u;E;	δ
�) ≤ const ·

[
dist(u; ∂	δ

�)

dist	δ
�
(u;E)

]β

.

Here dist	δ
�

denotes the distance inside 	δ
� .

Proof See [10] Proposition 2.11. The proof is based on the uniform bound of
the probability that the random walk on � crosses the annulus without making
the full turn inside. �

Finally, let Rδ
�(s, t) ⊂ � denote the discretization of the open rectangle

R(s, t) = (−s; s) × (0; t) ⊂ C, s, t > 0;
bδ ∈ ∂H

δ
� be the boundary vertex closest to 0; and Lδ

�(s), Uδ
�(s, t), V δ

�(s, t)

be the lower, upper and vertical parts of the boundary ∂Rδ
�(s, t), respectively.

Lemma A.3 (exit probabilities in the rectangle) Let s ≥ 2t and t ≥ 2δ. Then,
for any vδ = x + iy ∈ Rδ

�(s, t), one has

y + 2δ

t + 2δ
≥ ωδ(vδ;Uδ

�(s, t);Rδ
�(s, t)) ≥ y

t + 2δ
− x2 + (y + 2δ)(t + 2δ − y)

s2
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and

ωδ(vδ;V δ
�(s, t);Rδ

�(s, t)) ≤ x2 + (y + 2δ)(t + 2δ − y)

s2
.

Proof See [10] Lemma 3.17. The claim easily follows from the maximum
principle for discrete harmonic functions. �

A.2 Lipschitzness of discrete harmonic and discrete holomorphic functions

Proposition A.4 (discrete Harnack Lemma) Let u0 ∈ � and H : Bδ
�(u0,R) →

R be a nonnegative discrete harmonic function. Then,

(i) for any u1, u2 ∈ Bδ
�(u0, r) ⊂ IntBδ

�(u0,R),

exp

[
− const · r

R − r

]
≤ H(u2)

H(u1)
≤ exp

[
const · r

R − r

]
;

(ii) for any u1 ∼ u0,

|H(u1) − H(u0)| ≤ const ·δH(u0)/R.

Proof See [8] (or [10] Proposition 2.7). The proof is based on the asymptotics
(A.1) of the free Green’s function. �

Corollary A.5 (Lipschitzness of harmonic functions) Let H be discrete har-
monic in Bδ

�(u0,R) and u1, u2 ∈ Bδ
�(u0, r) ⊂ IntBδ

�(u0,R). Then

|H(u2) − H(u1)| ≤ const ·M|u2 − u1|
R − r

, where M = max
Bδ

�(u0,R)

|H(u)|.

In order to formulate the similar result for discrete holomorphic functions
we need some preliminary definitions. Let F be defined on some part of ♦.
Taking the real and imaginary parts of ∂δF (see (3.2)), it is easy to see that F

is holomorphic if and only if both functions

[BF ](z) := Proj[F(z);u1(z) − u2(z)],
[WF ](z) := Proj[F(z) ; w1(z) − w2(z) ]

are holomorphic, where u1,2(z) ∈ � and w1,2(z) ∈ �∗ are the black and white
neighbors of z ∈ ♦, respectively (note that F = BF + WF ).

Let 	δ
� be a bounded simply connected discrete domain. For a function G

defined on both “boundary contours” B ,W (see Fig. 11), we set

∮ δ

B∪W

G(ζ )dδζ :=
n−1∑

s=0

G

(
1

2
(us+1 + us)

)
(us+1 − us)
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Let 	δ
� be a bounded simply con-

nected discrete domain. We denote
by B = u0u1..un, us ∈ �, its closed
polyline boundary enumerated in the
counterclockwise order, and by W =
w0w1..wm, ws ∈ �∗, the closed poly-
line path passing through the centers
of all faces touching B enumerated in
the counterclockwise order. In order to
write down the discrete Cauchy for-
mula (see Lemma A.6), one needs to
“integrate” over both B and W .

Fig. 11 Discrete Cauchy formula, notations (see Lemma A.6)

+
m−1∑

s=0

G

(
1

2
(ws+1 + ws)

)
(ws+1 − ws).

Lemma A.6 (Cauchy formula) (i) There exists a function (discrete Cauchy
kernel) K( · ; · ) : �×♦ → C, K(v, z) = O(|v − z|−1), such that for any dis-
crete holomorphic function F : 	δ♦ → C and z0 ∈ 	δ♦ \(B ∪W) the following
holds true:

F(z0) = 1

4i

∮ δ

B∪W

K(v(ζ ); z0)F (ζ ) dδζ,

where ζ ∼ v(ζ ) ∈ W , if ζ ∈ B , and ζ ∼ v(ζ ) ∈ B , if ζ ∈ W (see Fig. 11B).
(ii) Moreover, if F = BF , then

F(z0) = Proj

[
1

2πi

∮ δ

B∪W

F(ζ ) dδζ

ζ − z0
; u1(z0) − u2(z0)

]
+ O

(
MδL

d2

)
,

where d = dist(z0,W), M = maxz∈B∪W |F(z)| and L is the length of B ∪W .
The similar formula (with w1(z0) − w2(z0) instead of u1(z0) − u2(z0)) holds
true, if F = WF .

Proof See [10] Proposition 2.22 and Corollary 2.23. The proof is based on
the discrete integration by parts and asymptotics of the discrete Cauchy kernel
K( · ; · ) proved by R. Kenyon in [28]. �

Corollary A.7 (Lipschitzness of holomorphic functions) Let F : Bδ♦(z0,R) →
C be discrete holomorphic. Then there exist A,B ∈ C such that

F(z) = Proj[A ; u1(z) − u2(z)]+Proj[B ; w1(z) − w2(z)]+O(Mr/(R−r)),



Universality in the 2D Ising model 577

where M = maxz∈Bδ♦(z0,R) |F(z)|, for any z such that |z − z0| ≤ r < R.

Proof Namely,

A = 1

2πi

∮ δ

B∪W

[BF ](ζ )dδζ

ζ − z0
and B = 1

2πi

∮ δ

B∪W

[WF ](ζ )dδζ

ζ − z0
. �

A.3 Estimates of the discrete Green’s function

Here we prove two technical lemmas which were used in Sect. 3.5. Recall
that the Green’s function G	δ

�
(·;u) : 	δ

� → R, u ∈ 	δ
� ⊂ �, is the (unique)

discrete harmonic in 	δ
� \ {u} function such that G	δ

�
= 0 on the boundary

∂	δ
� and μδ

�(u) · [�δG	δ
�
](u) = 1. Clearly,

G	δ
�

= G� − G∗
	δ

�

,

where G� is the free Green’s function and G∗
	δ

�

is the unique discrete har-

monic in 	δ
� function that coincides with G� on the boundary ∂	δ

� . It is
known that G� satisfies ([28], see also [10] Theorem 2.5) the asymptotics

G�(v;u) = 1

2π
log |v − u| + O

(
δ2

|v − u|2
)

, v �= u. (A.1)

Lemma A.8 Let Bδ
� = Bδ

�(z0, r) ⊂ �, r ≥ const ·δ, be the discrete disc,
u ∈ Bδ

� be such that |u − z0| ≤ 3
4r and G = GBδ

�
(·;u) : Bδ

� → R be the cor-
responding discrete Green’s function. Then

‖G‖1,Bδ
�

=
∑

v∈Bδ
�

μδ
�(v)|G(v)| ≥ const ·r2.

Proof It immediately follows from (A.1) that

(2π)−1 log

(
1

4
r

)
+ O(δ2/r2) ≤ G∗

Bδ
�

(·;u) ≤ (2π)−1 log

(
7

4
r

)
+ O(δ2/r2)

(A.2)
on the boundary ∂Bδ

� , and so inside Bδ
� . For v ∈ Bδ

� such that |v − u| ≤ 1
8r ,

this gives

G(v) = G�(v;u) − G∗
Bδ

�

(v;u) ≤ −(2π)−1 log 2 + O(δ2/r2) ≤ −const.

Thus, ‖G‖1,Bδ
�

≥ ‖G‖1,Bδ
�(u, 1

8 r)
≥ const ·r2. �
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Lemma A.9 Let Bδ
� = Bδ

�(z0, r) ⊂ �, r ≥ const ·δ, be the discrete disc,
u ∈ Bδ

� and G = GBδ
�
(·;u) : Bδ

� → R be the corresponding discrete Green’s
function. Then

‖∂δG‖1,Bδ♦(z0,
2
3 r)

=
∑

z∈Bδ♦(z0,
2
3 r)

μδ♦(z)|[∂δG](z)| ≤ const ·r.

Proof Let |u − z0| ≤ 3
4r . It easily follows from (A.1) and Corollary A.5 ap-

plied in the disc Bδ♦(z, 1
2 |z−u|) that |[∂δG�](z;u)| ≤ const ·|z−u|−1. There-

fore,

‖∂δG�‖1,Bδ♦(z0,
2
3 r)

≤ ‖∂δG�‖1,Bδ♦(u,2r) ≤ const ·r.
Furthermore, double-sided bound (A.2) and Corollary A.5 imply

[∂δG∗
Bδ

�

](z) = ∂δ[G∗
Bδ

�

− (2π)−1 log r](z) = O(const ·r−1), |z − z0| ≤ 2

3
r.

Thus,

‖∂δG∗
Bδ

�

‖1,Bδ♦(z0,
2
3 r)

≤ const ·r.

Otherwise, let |u − z0| > 3
4r . We have

G∗
Bδ

�

(·;u) ≤ (2π)−1 log(2r) + O(1)

on ∂Bδ
� , and so on the boundary of the smaller disc Bδ

�(z0,
17
24r) which still

contains Bδ♦(z0,
2
3r). At the same time,

G�(·;u) ≥ (2π)−1 log
1

24
r + O(1) on ∂Bδ

�

(
z0,

17

24
r

)
.

Thus,

0 ≥ G = G�(·;u) − G∗
Bδ

�

(·;u) ≥ −const

on the boundary, and so inside Bδ
�(z0,

17
24r). Due to Corollary A.5, this gives

[∂δG](z) = O(const ·r−1), for |z − z0| ≤ 2

3
r.

Hence, ‖∂δG‖1,Bδ♦(z0,
2
3 r)

≤ const ·r . �
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