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APPROXIMATION AND EXTENSION PROBLEMS
FOR SOME CLASSES OF VECTOR FIELDS

V. P. KHAVIN AND S. K. SMIRNOV

ABSTRACT. The uniform approximability on a compact set K C R™ of an arbitrary
vector field continuous on K by curl-free, solenoidal, and harmonic vector fields is
studied. It is proved that the metric disconnectedness of K ensures “free approxi-
mation” by curl-free fields. A complete geometric description is given of the sets K
on which any continuous field coincides with the gradient of a smooth function. Free
approximation by jets of order one is considered. An example is constructed showing
that the Bishop locality principle is not applicable to harmonic fields in R3. A direct
proof of the presence of rectifiable arcs in the support of any solenoidal charge is
given (this result was obtained in [4] by a different method).

By definition, a vector field in R™ is a mapping v: E — R™, where E is a subset of
R™; the set E will be called the domain of v and denoted by domw. We denote by v
the kth coordinate of v = (vy,...,v,).

Suppose that a class X (U) of continuous vector fields v with domv = U is associated
with every U € O(R™), where O(R™) is the class of all open subsets of R™. Let X denote
the family {X(U)}ycomn) (a “presheaf of vector fields”).

For a compact set K C R™, we denote by C/(K) the set of all continuous vector fields(?)
v with domv = K. If v € X(U) and U C K, we can consider v|K, the restriction of v
to K. If the set of all such restrictions (that correspond to any U € O(R™) containing
K and to any v € X(U)) is uniformly dense in C(K), then K will be called an X-set. If
the set X (R")|K of all restrictions v|K with v € X (R") is uniformly dense in C(K), we
say that K is a strong X-set. We call K a perfect X-set if

X(R")|K = C(K).

These definitions stem from the following well-known problems (solved in many par-
ticular cases): given a family X, describe (more or less explicitly) the X-sets (the strong
X-sets, the perfect X-sets).

In this paper, we treat the following presheaves X.

1) X(U) = gradU, where gradU denotes the set of all curl-free continuous vector
fields on U, i.e.,

X(U) :={v€é(U):curlv:0}

‘:{’UEC_:(U)Z%E%iHU, j,kzl,...,n}
J
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(the derivatives are understood as distributions). Such fields are locally exact. Denoting
by B(p,r) the open ball of radius r centered at p, we may redefine grad U as follows:

veEgradU < VpeU3e, >0,f, € CY(B):v|B=Vf, (B=B(Dc¢p))-

In this case, the X-sets will be called grad-sets. A compact set K C R™ is a strong
grad-set if and only if

o € C(K)Ve > 03U € OR™), f € CH(U): max|v - Vf| <e.

(Clearly, U can be replaced by R™.)

The perfect grad-sets K can be characterized by the following property: on K, any
field v € C(K) coincides with the gradient of a C'-function.

Replacing C(U) by C1(U) or by C°°(U) in (), we get the same notion of a grad-set
and of a strong grad-set. But to make the notion of a perfect grad-set meaningful we
need precisely the class C(U).

2) X(U) = curl(U), where curl(U) denotes the set of all divergence-free continuous
vector fields, i.e.,

~ . = =~ Ov; .
X(U)={veCU):divv=0}= {v € C(U) : ;8@ =0in U}.

The corresponding X-sets (strong X-sets, perfect X-sets) will be called curl-sets (re-
spectively, strong or perfect curl-sets). It is easily seen that K is a curl-set if and only if
for any £ > 0 and any ¥ € C(K) there is an open set O D K and a field @ € C°°(0) such
that div@|o = 0 and maxg |7 — W| < €; locally, 1 is the curl of a C-field. Replacing
O by R™ and @ by curl @, we get an equivalent definition of a strong curl-set.

3) The following example is our main motivation. Put

h(U) := grad(U) Ncurl(U), U € OR").

The elements of h(U) are called harmonic vector fields (in U). Such a field can be
characterized as follows: locally, it is the gradient of a harmonic function, i.e.,

VpeU3e, >0,f, € C°(B): Af,=0in B,v=Vf|B (B=B(pep))

In other words, v € h(U) if and only if v € C_"l(U) and the Jacobi matrix of the mapping
v: U — R" is symmetric and has zero trace. Yet another (equivalent) version of this
definition can be given in terms of differential forms if we identify v with the form
w=uvdz] + -+ v, dz,; then

v € h(U)

(3
dw =0, w=0in U,

where dw is the exterior differential and dw the codifferential of w. In this formulation, the
definition makes sense for any Riemannian manifold (in place of R™) and for differential
forms of any degree. However, in this paper we restrict ourselves to vector fields in R™.

The notions of a harmonic vector field and a harmonic differential form play a funda-
mental role in many areas of mathematics. The one-dimensional complex analysis can
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be regarded as a very particular case of the theory of harmonic vector fields, because
h(U) with U € O(R?) (= O(C)) is precisely the set of all complex functions on U whose
complex conjugates are holomorphic in U. Indeed, v € h(U) if and only if v; — vy
satisfies the Cauchy—Riemann equations in U.

If X = (h(U))veomn), then an X-set will be called an h-set; the term “a strong h-set”
will be understood accordingly (the perfect h-sets are precisely finite sets).

Let K be a compact subset of C. We denote by R(K) the uniform closure in C(K)
(= the space of all complex functions continuous on K) of the set of rational functions
with poles off K. Then the h-sets are precisely the compact sets X C C for which

At present, the nature of such sets is understood rather well. The Vitushkin theorem
yields a complete characterization of such sets in terms of analytic capacity (see, e.g.,
[1, 2]). However, very little is known about h-sets for n > 3 (see [3]; the papers [4, 5]
contain some results on strong h-sets). A lot of results are known that generalize the
theory of rational approximation (and, in particular, the Vitushkin theorem) in various
directions. (A very general theory embracing many specific examples can be found in
[5].) These results pertain to the case where the role of X (U) is played by the space of
solutions (in U € O(R™)) of a homogeneous elliptic system with constant coefficients.
But the symbols of these systems are assumed to be surjective; this condition fails for
the system curlv = 0, dive = 0 (except for n = 2).

Let (U;) be an open covering of a compact subset K C R2. If U; N K is an h-set for
any ¢, then K is an h-set (the Bishop theorem; see [1, 2]). This means that the property
to be an h-set in R? is local. In this paper we show, in particular, that this is no longer
true in R3.

We start (in §1) with the study of strong and perfect curl-sets, obtaining geometric
characterizations which are not quite useful in practice (for n > 3), but are easy to prove
and illustrate our approach: decomposing orthogonal vector measures in an integral of
simple geometric objects. The decomposition of this kind used in §1 is well known; this
is the Fleming-Rishel formula for the gradient of a function of bounded variation (a
BV-function). The criteria obtained in §1 become fairly transparent for n = 2. For
instance, we show that a plane compact set is a strong curl-set if and only if it contains
no nontrivial rectifiable loops. But the case n = 2 is degenerate (in a sense), since in this
case the curl-sets do not differ from the grad-sets, and the nature of the latter is much
harder to understand for n > 3. The vector measures /i orthogonal to the gradients are
solenoids (i.e., they satisfy the equation div i = 0). The corresponding “elementary”
vector measures that yield satisfactory decomposition formulas for solenoids are not so
easy to describe (unlike in the case of R?, for n > 3 it does not suffice to use oriented
rectifiable loops). We employ the decomposition results for solenoids proved in [4] and
a more elementary result proved below in §2. In our opinion, the proof of the latter is
of independent interest. In particular, this result guarantees that the support of any
solenoid in R™ contains a nontrivial simple rectifiable arc (not necessarily closed).

In §3 we discuss strong grad-sets. From §2 it follows immediately that if a compact
set K C R™ contains no (nondegenerate) rectifiable arcs, then K is a strong grad-set.
We show that, moreover, the absence of nondegenerate rectifiable arcs in K is equivalent
to the following approximation property: for any couple (¢, %) € C(K) x é(K ) and any
€ > 0 there is a function u € C*(R") such that

max |¢ — u| + max |7 — Vu| < ¢
K K
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(“uniform approximation by jets”). In §3 we also give a simple and complete geometric
description of the perfect grad-sets. In §4 we construct a counterexample showing that
the “naive” 3-dimensional version of the Bishop principle fails.
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§1. DIVERGENCE-FREE FIELDS AND CURLS

Notation. B,, will denote the Borel o-algebra in R™, and M(R") (= M) the set of
all countably additive R"-valued functions defined on B,; we call i € M a vector
charge. The term “measure” will mean a positive (possibly, infinite) countably addi-
tive set function. The closed support of a distribution 7' will be denoted by sptT’; we
put M(K) ={Qe M(R") :spt i C K }. Lebesgue measure in R™ will be denoted by
L.

1.1. A compact set K C R" is a curl-set (a strong curl-set) if and only if there is
no nonzero linear functional continuous on C(K') that vanishes on any restriction of a
solenoidal C-vector field (respectively, of a curl) to K. We identify (C(K))*, the dual

=

space of C(K), with M(K). Any fi € M (K) gives rise to an element f; € (C(K))*:

fﬁ(ﬁ)z/ <6adﬁ>:/vldﬂl++vndunv ’UEC_:(K),
K

where the 1, are scalar charges (the coordinates of the vector charge ). The correspon-
dence i — [z is an isometric isomorphism of M(K) onto (C(K))* (ie., ||fal = var i
by definition, the norm of & € C(K) is maxg ||7]]). Sometimes we do not distinguish
between f; and [ and write fi[0] instead of fz (V).

In order to describe the strong curl-sets, we need to characterize the vector charges
peM (K) orthogonal to the curls.

1.2. We recall that, by definition, a function f € L{ (R™) is a function of bounded
variation (a BV-function; we write f € BV (R")) if the (distributional) gradient of f is
in M(R™). In other words, f € BV (R™) if and only if f € Lj, (R") and there is a charge

fi € M(R™) such that

(1) [ pdivpdct = il

for any “test” C'>°-vector field @ in R™ with compact support. It is easily seen that if
f € BV and spt Vf is compact, then (1) is true for any C*°-field ¢ in R™. The theory
of BV -functions can be found in [6-8].

1.3. Let g denote the characteristic function of a set £ € B,. If xg € BV, then E is
said to have finite perimeter; the quantity var(Vyxg) is called the perimeter of E and is
denoted by P, (E). In place of Vxg we often write OF.
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1.4. Suppose that i € M(R™) (= M). We put ||Z]|(E) = sup 3", |fi(€)|, where E € By,
and the supremum is taken over all finite Borel partitions 7 of E. Observe that if E is
a domain with “nice” boundary Fr E, then ||0E|(B) = H"~'(B NFr E), where B € B,
and H"~ ! is the (n — 1)-dimensional Hausdorff measure.

1.5. Dealing with Vxg and P,(E), we may assume without loss of generality that the
boundary Fr E of E possesses the following property:

(2) 0< L"B(z,p)NE) < L"B(z,p)), ze€FrE, p>0.

Indeed, for any F € B, there is a set E € B, satisfying (2) and such that

/ Ixe —xFrldL" =0
Rn

clearly, Vxg = Vxr as distributions (see [7]).

Let C be a subset of R™. If there exists E € B, satisfying (2) and such that L"(E) > 0,
Pn(E) < 400, and C = Fr E, then we call C a generalized border. Such a set C' coincides
with spt ||OE|| and with the closure of Fr* E, the reduced boundary of E. The definition
and geometric analysis of the set Fr* E can be found in [7, 8] where it is shown that

|6E|(B) = |0E|(BNF* E) =H" Y (BNF*E), B € By,

and that Fr* E = |J/°5 C, U N, where ||0E||(N) = 0 and the Cj are compact parts of
C'-smooth hypersurfaces (more precisely, there are real functions ¢ € C 1(Og) defined
on open subsets @) of R™ such that Cx C {z € Ok : pr(z) =0, Vi (x) # 0}; see [T,
Chapters 3, 4]).

1.6. Let f be a real function on R", and let
e ={zeR": f(z) >t} (t€R).

The following result can be found in [6, 7).
If f € BV, then P,(&]) < oo for Ll-a.e. t € R, and

@ = " ol ar.
@ pod
(b) [Vfl = / 10/ | dt.

— o0

Identity (3a) means that V f[@] = [ +09&])[@] dt for any test field F; (3b) means that

IVFI(B) = [+ |10€f||(B) dt for B € By. Cleatly, from (3) it follows that spt 9] C
spt Vf for L!-a.e t € R (for the details, see, e.g., [4]).

1.7. Now we can describe the vector charges orthogonal to the curls. Let i € M. The
following assertions are equivalent: (a) ji[curl @] = 0 for any test field @; (b) i = Vf,
where f is a BV-function. Clearly, fi[curl <p] —(curl Z)[] (in the sense of distributions).
Hence, (a) implies that curl i = 0, and /i = grad f for some distribution f. It is easily
seen ([7, Chapter 1]) that f € L{ (R™), which proves the implication (a) = (b); the
reverse implication follows from the identity V flcurl §] = — [ f - diveurlgdL™ = 0. O



512 V. P. KHAVIN AND S. K. SMIRNOV

1.8. We also need a characterization of the vector charges i € M(K) (K is a compact
part of R™) orthogonal to every C°°-field solenoidal near K.
Let i € M (K ). The following assertions are equivalent:

(a) zf @ e C°(R™) and div@ = 0 in a neighborhood of K, then [i[g] = 0;

(b) fi=Vf, where f € BV and f(z) =0 off K.

The implication (a) == (b) was already proved in Subsection 1.7: from (a) it follows
that [i is orthogonal to the curl of any test field; hence, @ = Vf, f € BV. We take a
function o € C§°(R™) with sptanN K = @ and put

Fz) = eV, / Aa(y) - |y — 2>~ dL™(y).

Then @ € C°(R™), and for a suitable choice of ¢ we have div @ =, i.e., divg = 0 near
K,

0= @] = V@] = — fldiv] = oz]=—/f-ad£”.

We see that f = 0 L™-a.e. off K, and we can modify f on a set of £™measure zero to
obtain f =0 on R"\ K. Clearly, in (a) the space C*° can be replaced by C*.

1.9. Now we can completely describe the curl-sets and the strong curl-sets. Let sol K
denote the set of all restrictions to K of the C*°-fields solenoidal near K.

Theorem. Let K be a compact set in R™.
(a) K is a curl-set if and only if K contains no Borel subset E satisfying

(4) LYE)>0, Pu(E)< +oo.

(b) K is a strong curl-set if and only if K contains no generalized border.

Proof. (a) Suppose that £ € B, satisfies (4) and E C K. Clearly, spt0F C Fr E C K,

so that OF € M (K); moreover, dE[F] = — S div @dL™ = 0 for any test field @ € sol K.
At the same time, OE # 0 because we may take a test function a € C§°(R") equal
to 1 identically near K and then find a field @ € C°°(R") such that div @ = a. Then
OE[p] = — [ div@dL™ = —L™(E) # 0. Hence, the nonzero linear functional f55 (see
Subsection 1.1) vanishes on sol K, whence K is not a curl-set.

Suppose that no Borel part E of K satisfies (4). Taking fi € M (K) orthogonal to
sol K, we prove that [ = 0. By Subsection 1.6, we have i = Vf, where

(5) f e BV, f=00onR"\ K.

We show that (5) implies that f* := max(f,0) = 0 L"-a.e. Asnoted in Subsection 1.6,
PEH = P(€f+) < +oo for L'-a.e. positive t, and [p, frdLr = +°° C”(Eﬁ)dt
Hence, there is ¢ > 0 such that F := &] " satisfies (4) provided that [, f+d£” > 0. But
€f C K, a contradiction. Replacing f by —f, we conclude that f = 0 L™ -a.e., and

=0.

1.10. We prove (b). Suppose that K contains a generalized bozder C. Then spt OE C
C C K (see Subsection 1.5), and (0FE)(curl¥) = 0 for any ¥ € C*°(R"™). Consequently,

OF is a nonzero vector charge supported on K and orthogonal to all curls. Thus, K is
not a strong curl-set.
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Now, suppose that K contains no generalized border and that i € M (K) is orthogonal
to all curls. As in Subsection 1.7, we can write i = Vf, f € BV(R™). Applying (3) to
L, we see that

(6) spt 9! Csptjic K, and P(E]) < oo for Ll-ae. t.

If fi # 0, then, by (3), 85{ # 0 for all ¢ in some set of positive £!-measure. Thus, for
one of such values of t, 9/ is a generalized border contained in K (see Subsection 1.5),
and we arrive at a contradiction. O

1.11. The same approach leads to a description of the perfect curl-sets. By Subsection
1.5, with any generalized border C = Fr E we can associate its “reduced part” Fr* E,
which we denote by C*. By jiLA, where [i € M (R™) and A € B, we denote the vector
charge x4/l

Theorem. A compact set K C R™ is a perfect curl-set if and only if there is a positive
number M(K) such that

(7) HH(C*\ K) > M(KYH"Y{(C* N K)

for any generalized border C.

Proof. Let éO(R“) be the space of all continuous vector fields ¢ vanishing at infinity
(with the usual norm ||@|| = max |F|). We put sol := {F € Co(R™) : div g = 0}. Clearly,
sol is a closed subspace of Cp(R™).

Consider the operator rx : sol — c (K) transforming any ¢ € sol to the restriction of
Fto K, rg(P) = @|K. Clearly, K is a perfect curl-set if and only if rx is surjective. By
the Banach theorem, this means that % (C(K))* — (sol)* admits a lower estimate:

®) INEK) > 0: [ (D)l sony- > ME) varfi, fi € M(K).
The same argument as in Subsection 1.7 shows that the set
solt = { i e M(R") : jZ[¢g] =0, @ € sol }

coincides with {Vf : f € BV(R™)} (obéerve that if @ € sol, f € BV, then Vf[g] =
lim; ., Vf[Z;], where the ¢; are divergence-free test fields tending to ¢ uniformly on
R™; hence, Vf[7] = 0). Using the standard isometry (sol)* ~ M/(sol)*, we may rewrite
(8) as follows: ‘

9) INK) > 0: var(ii — Vf) > NK)var g, f[ie M(K), feBV(R").

For a generalized border C, we put i := OELK, where E is related to C by the
formula C = Fr E (see Subsection 1.5). Then /i € M (K); if K is a perfect curl-set, then
(9) implies the inequality

(10) MK) var i < var(fi — Vxg)-

But
var(fi — Vxg) = var(0ELK®) = |0E|(K°NC*) = HH(C*\ K)

(see Subsection 1.5; here K¢ := R™\ K). On the other hand, varu = [0E||(K) =
H*1(K N C*). Thus, (10) implies (7).
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To finish the proof, suppose that K satisfies (7). We take f € BV and put spt 9} =:
C; clearly, Cy is a generalized border (for £! -a.e. t). From (7) it follows that

10€/ 1I(K°) = [|o€] |(K* N Cy) = H 1 (K°n C})
> ME)H"™HK® N CF) = MK)||9&] | (K).
Integrating over ¢t € R and applying (3), we get
IVAIIES) = ME)[VfII(K).
Consider a vector charge i € M(K). We have
var(fi — Vf) = var((i — Vf)LK) + var(VfLK®)

> var((f — VLK) + M(K) var(V fLK)
> MEK)var((fi — VLK) + A\(K) var(VfLK)
> MK)var((f — Vf+ Vf)LK) = \(K) var(ji)

(without loss of generality we may assume that A(K) < 1). Hence, K satisfies (9), which
means that K is a perfect curl-set. O

1.12. The following remark is a consequence of Subsection 1.11. Suppose that K C R™
18 a compact set and that

(11) H* Y(KNT) =0 for any C*-hypersurface in R™.
Then K is a perfect curl-set.

Proof. Let C be a generalized border; then C* = Ujoil CjUN, where the C; are compact
parts of C"'-hypersurfaces (j = 1,2,...), and H"*(N) = 0 (see Subsection 1.5). By (11),
H"H(C;NK) =0 for any j = 1,2,..., whence H* }(C* N K) < S, HHC N K) +
H™1(N) = 0. Thus, K satisfies (7). O
1.13. The criteria proved in Subsections 1.9-1.11 reduce the approximation and ex-
tension properties of divergence-free vector fields to some geometric properties of the
compact set K in question. Unfortunately, these geometric properties are not easy to
verify, because the “test-objects” they involve are very complicated (we mean generalized
borders and sets satisfying (4)). However, for n = 2 the description of the strong and the
perfect curl-sets can be simplified: our “test-objects” become simple rectifiable loops. In
Subsections 1.14-1.19 below we discuss the plane case.

1.14. For i = (u1,p2) € M(R2) we put gt := (—p2, p1). Clearly, (i+)* = —f, and
(12) curli =0 <= divjt =0.

Therefore, for n = 2, the curl-sets, the strong curl-sets, and the perfect curl-sets
coincide, respectively, with the grad-sets, the strong grad-sets, and the perfect grad-sets.

1.15. A vector charge [i € M (R™) will be called a rectifiable curve if there exists a
vector-valued function f: [0, S] — R™ such that

(8) |F(s) = F(s)| < |5 — s'], s,5' € [0, 8];

(b) fil@] = [y (F(F(s)), f1(s)) ds for any test field &.

If f(0) = f(S), then the curve [i is said to be closed. If var i = S, we say that [
is a curve of length S. If the function f_](O, §) is one-to-one, then [i is a simple curve.
If a curve [ is closed and simple, we say that spt i = f{ ([0,8]) is a rectifiable loop. It
is easily seen that for any rectifiable closed curve i we have div i = 0; if n = 2, then
curl(fit) = 0.
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1.16. Suppose that C is a generalized border of a set E in R? (C' = Fr* E; see Subsection
1.5). The following expansion explains why Theorems 1.9 and 1.11 simplify for n = 2:

(13) OBy =Y i 9B =Y Il

where the c; are simple closed rectifiable curves. Indeed, (JE)" is a divergence-free
vector charge (because OF = Vg is curl-free), and it may be interpreted as an integral
one-dimensional current in the sense of [6, pp. 381, 384]; (13) follows from [6, p. 421].

1.17. Any solenoid in R? can be decomposed into simple rectifiable loops. Indeed, if
i € M(R?) and div i = 0, then curl i+ = 0, and

+o0 too
a9 a=vrt= [ et A =1val= [ el
for some BV-function f (see (3)). Combining (14) and (13), we arrive at the following
representation:

= / cdp(e),  Ilull = / lell do(e),

where J is the space of simple rectifiable curves and p a positive measure on J. No such
representation is possible for n > 3; see [4].

1.18. The following statement is a simplified version of Theorem 1.9 valid for n = 2.

A compact set K C R™ is a strong curl-set if and only if K contains no rectifiable loop
of positive length.

A similar theorem is true for the strong grad-sets; see Subsection 1.14.

Proof. If K contains a nondegenerate rectifiable loop and if C is the corresponding simple
rectifiable curve, then C is a nonzero charge orthogonal to any divergence-free contin-
uous field, C+ € M (K), and K is not a strong curl-set. Conversely, if K is not a strong
curl-set, then, by Theorem 1.9, there is a generalized border C C K. Applying (13), we
get a simple closed rectifiable curve ¢; with varc; > 0 and sptc; C C C K (this inclusion
follows from (13) for all j); therefore, sptc; C C is a nondegenerate rectifiable loop. O

1.19. The description of the perfect curl-sets (perfect grad-sets for n = 2) obtained in
Subsection 1.11 can be reshaped as follows.

A compact set K C R™ is a perfect curl-set if and only if there is a positive number
MK) such that

(15) HU I\ K) > MEYHY(INK) for any rectifiable loop .

Proof. (7) => (15): any nondegenerate rectifiable loop is a generalized border, and
H(1*) = HL(D).
(15) = (7): if C is a generalized border, then, by (13),
H* O\ K) = |0E||(K°) = Y lle; (K = > H' (K Ney)
> A\(K) Y HU K Nej) = MK) D llgll(K) = MK)|0E]|(K)
=AMKH" ' (C*nK). O

As we shall see later on, relation (15) characterizes perfect grad-sets in all dimensions
(not only for n = 2).
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§2. THE SUPPORT OF A DIVERGENCE-FREE VECTOR
CHARGE CONTAINS A SIMPLE RECTIFIABLE ARC

2.1. In order to apply the same approach as in §1 to grad-sets, we need an analog of the
decomposition formulas (3) for divergence-free (= solenoidal) vector charges. Theorems
of this kind (and stronger ones) were obtained in [4] (one of them is reproduced at the
end of this section). Here we suggest another approach to this problem which seems
interesting in itself and proves the claim made in the section title. We establish the
following theorem.

Theorem. Suppose that

(a) i€ M(R™), spt I is compact, i # 0;

(b) divi e M(R™) (i.e., div i is a finite scalar charge).
Then spt fi contains a nondegenerate simple rectifiable arc (i.e., a set of the form sptec,
where ¢ is a simple rectifiable curve of positive length; see Subsection 1.15).

2.2. Any charge i € M (R™) can be written as follows:
(16) fi=vm, m:= ||,

where 7 is a Borel measurable vector field in R", and || = 1 m-a.e. The field 7 of unit
vectors gives rise to a differential operator A:

a7) (AN)(@) = (V(@).7(e)) = gots(e) (7 € CHRY))

The right-hand side of (17) is defined m-almost everywhere, namely, for any x where
|7(z)] = 1. We may view A as an (algebraically) linear transformation of C*(R"™) to
L (m); the ess-sup-norm in L°°(m) will be denoted by || - ||coc- The proof of Theorem
2.1 is based on the study of the operator A.

2.3.1. We put
A:={feC'R"): [A(f)llw <1}

If fe Aand p € C*(R™), sup|¢'| < 1, then po f € A.
Indeed,

(V(po f), ) =K@ o HVE <V O
2.83.2. For any f1,...,fn € A and any 6 > 0 there is h € A such that

A — max(f1,..., fn)llo <6

(max may be replaced by min).

Proof. Tt suffices to consider the case n = 2. Let g := f1 — f2; then max(f1, fo) = g+ + fo.
We take ¢ € C(R) such that () = ¢T for |[t| > § and 0 < ¢/(t) < 1 for all t € R. Then
[tT — ¢(t)| < & everywhere in R. We put h := po g+ fo. Clearly, ||h — max(f1, f2)|loo =
loog—gtlleo <6, and for m-almost every = we have

|(AR) ()]

lo'(9(x))(Af1)(x) — ¢'(9(x))(Af2)(x) + (Af2)()|
<¢'(g(@) + (=¥ (g(x) +1)=1. O
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2.4. Now we define a quasidistance p in R™ related to A:

(18) p(z,y) = sup{|f(z) — f(y)| : f € A}

(“quasi” refers to the fact that p(z,y) may be infinite). The triangle inequality and the
symmetry of p are obvious, and p(z,y) =0 = z =y (see Subsection 2.4.3 below).

2.4.1. Fixing z,y € R", we consider the set

Avy ={f € A: f(z) < f(u) < f(y), ueR"}.

We put p(x,y) := sup{|f(z) — f(y)| : f € Ay} and prove that p = p. Indeed, it
suffices to prove that p > p. This inequality is implied by the following fact:

Vf e AVe € (0,[f(y) — f(z)])3g € Az y:
l9(y) — g(@)| > |f(y) — f(z)] —e.

In the proof of (19) we may assume that f(y) # f(z), and, moreover, f(y) > f(z)
(otherwise we replace f by —f). We take a function ¢ € C1(R) such that 0 < ¢/(t) <1
for all t € R, ¢(t) =0 on (—oo, f(x)], and ¢(t) = f(y) — f(z) — e on [f(y), +0o0). Then
g := po f satisfies (19), because g € A by the statement proved in Subsection 2.3.1, and
fy) = f(x) —e = g(y) > g(u) > g(x) = 0 for all u € R™; hence, g € A, ,. Moreover,
lg(y) —g9(@)| = |f(y) — f(z)| —e. O

We observe that f € A,, = f+ const € A;,. Therefore, we may prescribe any
value of f(z) in the definition of A, ,,.

(19)

2.4.2. Ifx ¢ sptp, y € R", y # z, then p(z,y) = +oo. Indeed, for any N > 0 there

is a function f € C*(R") vanishing on spt u and at y and such that f(z) > N; clearly,
feA O

2.4.3. The Euclidean metric does not exceed p: |x—y| < p(z,y) for z,y € R™. Indeed, let
x #y; we put f(z) := (z, z=;). Then |[Vf| =1, and f € A; but |f(z) — f(y)| = [z —y|.
2.4.4. The function z — p(x, z) ts lower semicontinuous for any x € R"™, i.e., p(z,y) <

lile*’yl_)O p(xaz) (x’y € R”l)
Indeed, we have |f(x) — f(2)

|
lim,_, o |£(2) — £(2)] = | £(z)

< p(z,2) for any f € A, whence lim|,_,| ., p(z,2) >
— f(y)|- The same argument yields

p(z,y) < lim p(2',2").

|2/ —al =02/ —y|—0

Corollary. Any closed p-ball {z € R"™ : p(z,a) < T}, where a € R*,T > 0, is closed
with respect to the Euclidean topology of R™.

2.5. Let K;, Ky be compact subsets of R™, and let T be a positive number, T <
(K1, K») == inf{ p(z1,22) : z; € K; }. Then there exists f € A such that 0 < f < T
f|K1 =07 f|K2=T

Proof. We take a positive number ¢ satisfying T+ 8¢ < p(K, K3) and fix a point y € Ko.
Then p(x,y) > T + 8¢ for any =z € K;. Hence, there exists a function h, € A such that
0 = hy(x) < hg(u) < hy(y) for uw € R™, and h,(y) > T + 8 (see Subsection 2.4.1).
We put U, := {u € R® : hy(u) < €}. There is a finite set {z1,...,zn5} such that
K, C Uivzl U,,. Then

0<h(z):= 1£r;1<nN he,(z) <e
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if z € K1, and h(y) > T + 8. By the statement proved in Subsection 2.3.2, we can find
gy € A satisfying |g, — h| < € everywhere in R™. Hence,

gy < 2e on K, gy(y) > T +Te.

Putting V, := {u € R" : g,(u) > T + 6¢ }, we find a finite set {y1,...,ya} such that
K, C UkM:1 Vye- Let g := maxi<p<wr gy, . Clearly, g(z) < 2¢ if z € K; and g(z) > T+ Te
if z € K,. Using Subsection 2.3.2 again, we find f € A such that |f — g| < & everywhere
in R™. Then f(z) < 3¢ if z € K and f(z) > T + 5¢ if z € Ky. There exists a function
¢ € C1(R) such that 0 < ¢/(t) < 1 for all t € R, ¢|(—c0,3:) = 0, @|[7+5¢,400) = T Then
fi=po f € A is the required function. |

2.6. The distance p(z,y) can always be halved: for z, y € R", if p(z,y) < +o0, then
there is a point z € R™ such that p(z,z) = p(z,y) = p(z,y)/2.

Proof. Let T := p(z,y). It suffices to find a point z satisfying p(z,z) < T/2, p(z,y) <
T'/2 (the rest follows from the triangle inequality). Put B,(z,a) :== {y € R" : p(z,y) < a }.
We must show that

B,(z,T/2) N B,(y,T/2) # 2.

By the said in Subsections 2.4.2 and 2.4.4, B® := B,(z,T/2) and BY := B,(y,T/2)
are closed subsets of K := spt u; consequently, these sets are compact. Since they are
disjoint, there is a positive number A such that 0 < A < inf{|u—v|:u € B*, ve BY }.
Let E, denote the open (Euclidean) o-neighborhood of the set E C R™:

E,={peR":dq€E,|p—q/<c}

We put
Bl :=Ka;3\ (B®)as3, By :=Kasz\ (BY)ass-

The sets B;,, B, are compact, and

(a) K C Int By UInt By;

(b) d(B®,B,) > A/3, d(BY,B;) > A/3, where d denotes the Euclidean distance
between sets;

(c) B* C By, BY C B;.

Since z +— p(z, z) is a lower semicontinuous function (see Subsection 2.4.4), inf{p(z,t) :
t € Bl } =: J is attained at some point 2’ € B],. From (b) it follows that ' ¢ B, whence
J = p(z,z') > T/2 + ¢ for some ¢ > 0. Putting K; := B., Ko := {x}, we observe that
o(K1, K3) = p(z, BL,) > T/2+¢. Hence, we can apply the statement proved in Subsection
2.5 to get a function f € A that vanishes on B, and is equal to T'/2+¢ at . Interchanging
Bj, and By, we get another function g € A such that g[p;, = 0 and g(y) = T/2 + 6 for
some § > 0. Let h = f —g. Then h(z) = f(z) if 2 € By, and h(z) = —g(2) if z € B;.
Hence, (Ah)(z) = (Af)(z) m-a.e. on By and (Ah)(z) = —(Ag)(2) m-a.e. on B;. By (a),
we have |(Ah)(z)| <1 m-a.e., so that h € A. But

T = p(z,y) > |h(z) = h(y)| = |f(2) + g(v)|
=(T/2+¢e)+(T/2+8) =T +e+6>T,

a contradiction. O
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2.7. Now we prove that p is a geodesic metric.
Let z,y € R™, and let 0 < p(z,y) < +00; then there is a mapping ¥: [0, p(z,y)] — R"
such that
(a) ¥(0) =z, P(p(z,y)) = y;
(b) for any a,b € [0, p(z,y)] we have |a — b| = p(1(a), ¥(b)).
Subsections 2.5.3 and 2.4.2 show that 1 is a compression, i.e., |¢(a) — ¥(b)| < |a — b],
and that all values of 9 are in spt ;. Hence, z and y can be joined in spt u by a simple
rectifiable arc of length not exceeding p(z,y).

Proof. Let T' := p(z,y). It suffices to construct a mapping 1 satisfying (a) and the
following condition (b’): |a — b] > p(¢¥p(a), (b)) for any a,b € [0,T]. (Indeed, then
T < plo,(a)) + p(p(a), B(8)) + p((b),y) < 10— a| + ja— b| + |b - T| = T, and (b)
follows.) We put 9(0) := z, ¥(T') := y. By the statement proved in Subsection 2.6, there
is a point z € R™ such that p(1(0), z) = p(z,¥(T)) = T/2. Let ¥(T/2) := z. Thus, ¥ is
already defined on the set E; := {0,7/2,T}. We denote c;; = jT-27%,j=0,1,...,2%.
Continuing this procedure by induction, after the kth step we get a function v defined on

= {chc}?k:O and satisfying (b’) on Ex: p(Cjk, Cjt1,k) = T /2%, where Cik:=v(cjk)-
Using Subsection 2.6, we can extend 1 to Exy; in such a way that

p(Cj ks Coji1k41) = p(Cojikr1, Ciran) = T/2FH,

and 1 satisfies (b’) on Ejyq: if 0 < p < g < 281 then

[un

a—
P(Cp+1, Cq 1) < ZP(Cj,kH, Cit1k+1) = (g —p)T/2k+1
Jj=p
= |cppt1 — Cqrr1l, 0<p<g<2Fth

This process yields a mapping 1: E — R"™, where E = |J Ey{jT/2*}; x. This mapping
satisfies (a) and (b’) on E. It can be extended by continuity to [0,7], and condition (b’)
" will persist (see Subsection 2.4.4). O

2.7.1. So far, we have not used property (b) in Theorem 2.1; we need it only at this stage
of the proof. Now we assume that [ satisfies both conditions (a) and (b) of Theorem 2.1
and put A :=div iI; X is a scalar charge (A € M(R™)).

2.7.2. Clearly, L>(m) C L?(m). Let [, ] denote the scalar product in L?(m). The
operator A possesses the following properties:

(a) A(w) = (Au) -v+u - (Av) m-a.e.;

(b) [Au,v] + [u, Av] = — [uwvdA for any u,v € C*(R™).

Proof. Indeed, (a) is true at any point x where |7(z)| = 1; (b) follows from the definition
of \. O

2.7.3. Weput K :=spt ji, N(K) := {£ € M(K) : div€ € M(K)}, N;(K) := {£ € N(K) :
var€ < 1, var(divé) <1}, My(K) :={¢ € M(K) :var¢ <1}. The set Ni(K) is weakly
compact (i.ez, is compact in the weak topology defined by the pairing (f,&) — £[f],
feC(K), €€ M(K)).

Proof. We have Ny (K) C M (K); the latter set, endowed with the weak topology, is a
metrizable space. Therefore, the weak compactness of Ny (K) will be proved if we take an
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arbitrary sequence {£} of elements of N; (K) and find its subsequence weakly convergent
to an element of N;(K). We have

(20) - &[Vu] = —/udAk, M i=divéy, ue C'(R™), k>1.

Since var&; < 1, var \x < 1, we can find a sequence k; ' 400 such that 5@ — 5,
Ak, — X weakly; passing to the limit in (20) (with k = k;), we get £[Vu] = — [udA
(u € CY(R™)). Hence, divé = XA € M;(K), and £ € N(K). a

2.7.4. The Krein-Milman theorem applied to the convex set Ny (K) C M (K) guarantees
the existence of an extreme point of Ny (K). Consequently, in the proof of our theorem
it may be assumed that

(21) [ is an extreme point of N;(K).

2.7.5. If [i satisfies (21), then there exists no Borel function w on R™ satisfying the
following conditions:

(22) m{w =0} > 0, m{w =1} >0, 0<w<1l me-ae;

(23) [Au, w] = —/uw d\  for any u € CH(R™).

Proof. The left-hand side in (23) is equal to [(Vu, 7)wdm = (wii)[Vu]. Therefore, (23)
means that div(wii) = wdiv i, and wi € Ny(K). Let fiy := wii, flz := (1 — w)fi. Then
i = fi1 + fi2, varji1 + varjis = [wdm + [(1 — w)dm = var [i, whereas [i # const fi,
jia # const I, which contradicts (21). |

2.7.6. We denote by sol; (K) the set { i € M(K):divi=0, varii <1}. Assume that
(21) [i is an extreme point of sol; (K).

Then the arguments of Subsection 2.7.5 can be repeated with A = 0.

2.8. The following assertion is the key point of the proof.

Suppose that i satisfies the assumptions of Theorem 2.1 and condition (21). If Kj,
Ky are compact sets in R™ and m(K;) > 0, j = 1,2, then p(K1,K32) < 400 (i.e., there
exist x; € K; such that p(xy,x2) < +00)).

Proof. Suppose the contrary: let p(K1, K2) = +o00. Then p(Ki, K3) > N for any N >
0. By the statement proved in Subsection 2.5, there is a function uy € A such that
un|k, =0, un|r, = N, and 0 < uy < N everywhere in R”. We put wy = N~ tuy;
then wy € CY(R™), wy|k, = 0, wn|k, =1, 0 < wy < 1, and ||[Awn|oe < 1/N (here
Il lloo := Il * loo,m)- Let I =||A||l. The closed unit balls in L>°(m) and L*>°(l) are compact
with respect to the weak topologies defined by the natural pairings (L*(m), L>(m)),
(L*(1), L>=(l)). Hence, there is a sequence of integers N; T +oo and a function w €
L*(m) such that

/wNjUdm—> wU dm, /wNjUd/\——> wU dA\

Jj—ro0 j—o00
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for any U € L*(m) N L*(l). Clearly, 0 < w < 1, w = 0 m-a.e. on Kj, and w = 1 m-a.e.
on Ky. In accordance with Subsection 2.7.2, we have

(24) [Au, wy,] + [u, Awn,] = — /wNjud)\, u € CH(R™).

Recalling the estimate |[u, Awy,]| < N; ' [ |u|dm and passing to the limit in (24),
we get

[Au,w] = — /wud)\, u € C'(R™),

which contradicts the statement proved in Subsection 2.7.5. O

2.9. Now we can finish the proof of Theorem 2.1. We show that

If [i satisfies the assumptions of Theorem 2.1 and (21), then for any x,y € spt i and
any € > 0 there exist points =,y € spt @i such that ' and y' can be joined by a simple
rectifiable arc in spt @i, and |z — 2’| < e, |y —v'| <e.

Proof. Let K; and Ko be disjoint (Euclidean) closed balls of radius less than ¢ and
centered, respectively, at x and y. Since x,y € sptu, we have m(K;) > 0 (j = 1,2).
Hence, we can apply the assertion proved in Subsection 2.8 to find points z' € Kj,
y' € K such that 0 < p(z,y’) < +00. Now, the existence of the desired arc follows from
Subsection 2.7. Theorem 2.1 is proved.

2.9.1. Using the statement in Subsection 2.7.5 and putting A = 0, we can repeat the
argument given in Subsections 2.8-2.9 to get the following conclusion: the assertion of
Subsection 2.9 remains valid if we replace (21) by (21).

2.10. Again, suppose that [ satisfies conditions (a), (b) of Theorem 2.1 and condition
(21) (or (21’)). The above arguments result in the following alternative. Either any two
points x,y € spt i can be joined by a simple rectifiable arc in spt [, or spt @i contains
arbitrarily long simple rectifiable arcs.

Proof. Let C denote the supremum of the lengths of the simple rectifiable arcs contained
in spt fi. Suppose that C' < +00. We take any pair (x,y) of points in spt 7. Using the
statement proved in Subsection 2.9, we can find a sequence {;} of simple rectifiable arcs
that are contained in spt /i and have endpoints z;, y; tending, respectively, to z and y.
Since the lengths H'(7y;) arc uniformly bounded, a simple compactness argument yields
a rectifiable (not necessarily simple) arc v C spt u joining = and y. It is easily seen that
v contains a simple arc with the same endpoints. O

2.11. A deeper analysis of the structure of vector charges of class N(K) (and, in partic-
ular, of divergence-free charges) can be found in [4]. We need the following result (see

[4]).
Let i € M(R™), divjii=0, S >0. Then

@) = [ Ravs(®), A= [ RIasE, Gz [ avR]dsE)

S

where Cg is the set of all curves of length S (see Subsection 1.15), and ~yg is a positive
measure on Cg (vs is a Borel measure relative to the natural topology on Cy).
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§3. APPROXIMATION AND EXTENSION THEOREMS
FOR GRADIENTS. APPROXIMATION BY JETS

3.1. We say that a set E C R™ is metrically disconnected (E is an m.d. set) if £ contains
no nontrivial simple rectifiable arc. The following statement is an immediate consequence
of Theorem 2.1:

Every compact m.d. set is a strong grad-set.

Proof. Suppose that K C R™ is a compact m.d. set. It suffices to show that any charge
fi € M(K) orthogonal to all gradients of C*-functions is zero. But the identity {i[Vu] =0
(u € C1(R™)) means that div i = 0; if fi # 0, then spt i C K contains a nontrivial simple
rectifiable arc by Theorem 2.1. a

3.1.1. The following remark will be used in §4. A vector field ¥ defined on a set E C R
is called a quasigradient (on E) if ¥ = lim; ., Vu; uniformly on E for some sequence
(Uj), u; € Cl(Rn), ] = 1,2, RN

Let Ky, K be compact sets in R™ such that Ko C K, and let ¥ € 5(K) If

(26) Uk, 18 a quasigradient on K,

and K\ Ky is an m.d. set, then ¥ is a quasigradient on K.

Proof. Suppose that i € M(K), i[Vu] = 0 for any u € C'(R"). By the Hahn-Banach
theorem, it suffices to show that (26) implies the relation [[v] = 0. Clearly, div i = 0,
so that @ € N(K). By the Krein-Milman theorem, we may assume that [ is an extreme
point of sol; (K). We prove that spt i C Ky. Suppose that x € sptji\ Ky. Since the
support of a divergence-free field cannot be a singleton, we can find a point y € spt i\ Ko,
y # x. In accordance with Subsection 2.9.1, there are points z’,y’ € spt f arbitrarily
close, respectively, to  and y that can be joined by a simple rectifiable arc v in spt fi. The
points z’, 3 can be chosen so that z’ € spt i\ Ko (because x € spt [\ Ko, and the latter
set is relatively open in spt ji) and ¢’ # z’. Then a simple rectifiable arc joining z’ and
v’ must have nontrivial intersection with K \ Ko, a contradiction. Thus, spt ii \ Ko = &,
and we see that fi[U] = 0 because v|g, is a quasigradient. O

3.1.2. Here we prove a theorem yielding a complete description of the m.d. sets in terms
of approximation properties. A compact set K C R™ will be called a jet set if for any
e > 0 and any couple (p,v) € C(K) x C(K) =: ¢(K) there is a function u € C*°(R")
such that .

m}gx|g0—u| +m}:{1x|z/) —Vu| <e.
Theorem. The class of all jet sets coincides with the class of all compact m.d. sets.

Proof. Let J(K) denote the set of all jets or order 1 restricted to K:

J(K) = {(¢,%) € &K) : Ju € C'(R"), ¢ = ulx, ¥ = Vulx }.

If K is not an m.d. set, then there is a nontrivial simple rectifiable curve R with spt R C
K. Consider the linear functional Fr € (¢(K))* defined by the formula

Fr(p, %) = w(e(R)) — ¢(b(R)) — RIY], (%) € &K)

(e(R) is the end and b(R) the origin of R). Then Fr|;) = 0, i.e., there is a nonzero
linear functional orthogonal to J, and K is not a jet set.
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Now, suppose that K is an m.d. set, and that
(27) (a) Fe(aK)), (b) Flyx) =0.

By property (a) in Subsection 2.7, there is a couple (u1, fi2) € M(K) x M(K) such that

Flp,d) = / odu + / (@, diia), (.9 € AK).

Property (b) in the same subsection shows that [wudus = — [(Vu,dpus) = div fis[u]
for any test function u € C*°(R™). Hence, div fia = ji1, i.e., po € N(K). If F' # 0, then
p2 # 0, and, by Theorem 2.1, K must contain a nondegenerate simple rectifiable arc. O]

3.1.3. Using the result mentioned in Subsection 2.11, we can give an “individual”
theorem characterizing the quasigradients on a given compact set K C R™. Suppose
@ e C(K).

The following assertions are equivalent:

(a) @ is a quasigradient on K;

(b) for any € > 0 there is a number M(g) > 0 such that

(28) R[@] < M(e) +€l(R) for any curve R with spt R C K,

where I(R) is the length of R (see Subsection 1.15).

Proof. Let ¢ be a quasigradient. We put M (¢) := 2maxg |u|, where u € C1(R™) satisfies
maxg |¢ — Vu| < e. Then (28) follows from the identity

R[@] = u(er) — u(bg) + R|§ — V]

(br and cg are the origin and the end of the curve R). In order to prove the implication
(b) = (a), we take e > 0 and put S := M(e)/e. Applying the result cited in Subsection
2.11 to an arbitrary divergence-free charge fi € M(K), we get

-

VO _ 9 var i

Alg) = | Rl dys(R) < (M(e) +e8) varys = (M(e) +e8)—
ReCs

(we have used the identity var i = Svar~s and the inclusions spt R C spt i C K for
vs-a.e. R; see (25)). Hence, fi[g] < 0. Replacing i by —ji, we conclude that ji[@] = 0 for
any solenoidal i € M(K), whence @ is a quasigradient. a

It is natural to ask about a purely geometric description of the compact sets K C R"
on which “free” approximation by jets of higher order is possible (in the spirit of Theorem
3.1.2). No such description is known to us (even for jets of order 2 in R?).

3.3. Can Theorem 1.18 be generalized to R™ for n > 3?7 The answer is in the negative
(see, e.g. [4]). There are compact sets K C R3 that contain no nondegenerate rectifiable
loops, but are not strong grad-sets. Nevertheless, Theorem 1.19 can be generalized to
R™ with any n.

Theorem. Let K C R™ be a compact set. The following assertions are equivalent:
(a) K is a perfect grad-set;
(b) there is a positive number \(K) such that

(29) MEYHM(INK) <HY(\ K)

for any rectifiable loop 1.
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Adding M\(K) - H'(I \ K) to both parts of inequality (29), we obtain an equivalent
condition:

(29 N(EH (D) <HU(\ K),

where X (K) = A(K)/(1 + A(K)).
Proof. We fix a large closed ball B the interior of which contains K. Let Grad B denote
the set {Vu :u € C*(B)} = {7 € C(B) : curl¥ = O|int g }. Assertion (a) means that
r(Grad B) = C(K) where r is the restriction operator, r(7) := 7| K (7 € C(B)). Clearly,
Grad B is a closed subspace of C(B). Identifying (C(B))* with M(B), we have
(Grad B)* := {3 € M(B) : [Vu] =0, u € C*(B) }
={& e M(B):divéd =0} =: s(B).

Hence, by the Banach theorem, condition (a) is equivalent to the following condition:
(¢) 3A(K) > 0 such that var(f— ) < M(K)varfi, g€ M(K), &€ s(B).

The implication (a) = (b) is fairly easy to prove. We take a simple rectifiable closed
curve & contained in B. Clearly, & € s(B). Putting @ = xxJ and applying (c), we get
(29) because ||G(E)|| = H(E Nsptd) for any E € B,. It remains to observe that for
every simple rectifiable curve | we can find a simple rectifiable curve [* C B such that
INK =1*NK and H'(I* \ K) < H'(1\ K).

3.4. We start the proof of the implication (b) => (a) with the following remark.
Suppose that K satisfies (b), and that C is a closed (not necessarily simple) rectifiable
curve. Then

(30) [CII(K®) =2 MK) - [|CI(K).
Proof. As already mentioned, we can write
c=3%¢, |cl= Z IC51I
j=1

where the C; are simple closed rectifiable curves (see the references in Subsection 1.1.6).
Putting I; := spt C;, we observe that ||C;||(E) = H'(l; N E) (E € B,), whence

IICII(K°)=ZHC]'II(K° ZHll \K) > MK ZH (I NK)

j=1 j=1

ZIICJH KCI(K). O

3.5. For a large number S > 0, consider the set Cg p of all curves of length S contained
in B. First we check that inequality (30) is fulfilled (possibly, with a smaller positive
constant A\(K)) for any R € Cs p.

Proof. If R € Cs p is not closed, then we can join the endpoints b(R) and e(R) of R by
a suitably oriented segment j to get a closed rectifiable curve R*. We note that

var(R — R*) < |b(R) — e(R)| < diam B =: d.
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By the remark in Subsection 3.4, | R*||(K€) > X (K) var(R*) (this analog of (29') follows
from (30)). Hence, for any R € Cs g we have

IIRH(KC) > [[RI(ES) = [l41I(K°) = X(K) var R* —
N (K) N(K)(S )—d
) )
)

/

(var R — varj) —
= N(K)S(1—S7td(1+ Al( )

N (K N(K) N(K)
z S = 5 arRZT“RH(K)»

provided that S > 2d(1 + N (K)).
3.6. To finish the proof, we take i € M(K) and & € s(B). Applying the statement
proved above in Subsection 3.5 and Theorem 2.11, we obtain

13 (K<) = /c IRI(K®) ds(R)

> 25 [ R ) = Xy )

(we recall that «yg-almost all curves occurring in (25) are contained in spt ji). Conse-
quently,

vax i — ) = var( ~ 8+ |7 (K°)
> 2 v - xx) + var(ea)) = 2

which proves (c) and, with it, Theorem 3.3. O

3.7. We apply Theorem 3.3 to the graph K = K; C R? of a continuous function
F€C([0;1] (Ky :={(x, f(z)) e R? : z € [0;1] }). Clearly, K is a perfect grad-set if f is
sufficiently smooth, e.g., f € C*([0;1]). This can be shown directly, by extending a given
field 7 € C(K ¢) to a gradient “by hands”, or by applying Theorem 3.3. (Both ways are
not difficult, but not so easy as it may seem at first glance, even if f = 0.) However, if
f is not so good, Ky may fail to be a perfect grad-set. Suppose, for instance, that there
is a sequence {A;} of disjoint segments A; = [a;, b;] C (0,1) such that

f(a;) = f(b;) =0,
f(c;) =h; >0, wherec; = %T—i_bj’
fliag.e;1s flie; b,)  are linear,

lima; = limb; = 0.

Then lim h; = 0. If b; — a; = o(h;), then condition (29) fails (it suffices to consider the
triangles formed by the graphs of f|a, and by A;). In this situation we can explicitly
construct a field 7 € C (Ky) coinciding with no gradient on K;. Namely, consider very
small disks B = B(p;,¢;), B = B(g;,¢;), and B = B(’/‘J,EJ) (here p; = (¢j,hy), ¢; =
(a3,0), r; = (b;,0)) with &; < b; — a;. Suppose that @ € C(K;), 7(0) = 0, 7 = §;7 on
K; \ {0UJ B}, where the §; are positive constants and 7 is the unit vector tangent to
Ky. Let I'; denote the oriented graph of f|a;. Then

(31) / (5,7) ds =< 8;h,;.
r
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But if u € C*(R?), then

/Iv (Vu,T)ds

J

(32)

ou

Estimates (31) and (32) contradict each other if the é; tend to zero sufficiently slowly.

This example shows that the notions of a perfect grad-set and of a strong grad-set
are different (any graph Ky with f € C([0, 1]) is a strong grad-set because it contains no
rectifiable loops).

3.8. The following consequence of Theorem 3.3 should be mentioned.
The area of any plane perfect grad-set is zero.

Proof. Let K C R? be a compact set with L2(K) > 0. Then K contains a density point
p. We denote by g the circle of radius R centered at p. It is easy to check that

IngHl('YR \ K)/H!(1r) =0,

so that K is not a perfect grad-set (by Theorem 3.3). O

In particular, let K be a totally disconnected compact set of positive area. Any vector
field continuous on K can be approximated uniformly on K by fields locally constant
near K. Hence, such a set K yields yet another example of a strong but not perfect
grad-set.

§4. NONLOCALITY OF h-SETS IN R3

4.1. We need the following result.

Let K C R® be a compact set of zero volume (i.e., the 3-dimensional Lebesgue measure
of K is zero). Then for any function u € C1(R®) and any € > 0 there exists a function
H harmonic in a neighborhood of K and such that |Vu — VH| < ¢.

This fact was proved in [9] and generalized to harmonic differential forms in [3] (see
also [10], [11]).

4.2. We denote by U the closed unit disk in R?,
U={(zy):2>+y* <1},

and put C = {(z,y) : 22 + y?> = 1}. Consider a function F' € C(U) with the following
properties:

(a) F=0on C,

(b) the graph of F|i\ ¢ is metrically disconnected.

(A method for constructing such functions is described below in Subsection 4.6.) Fix-
ing a number o € (0, 1), we put

K := the graph of F = { (z,y,2) € R®*: (z,y) € U, z = F(z,y) },
K_=Kn{z <o}, Ki:=Kn{z>—-0o}.

Clearly, the K. are the closures of relatively open subsets of K whose union is K. We
shall prove that

(a) K is not an h-set, although

(b) K4 and K_ are strong h-sets.
Therefore, no analog of the Bishop localization principle for R(K) (see the Introduction)
is valid in R3.
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4.3. First, we prove (a). Suppose K is an h-set. Then any field ¥ € C(K) is the uniform
limit (on K) of some fields ¥; € h(O;), where O; is a neighborhood of K. We may
assume that the O; are simply connected. Then @; = VH; (because curl 4; = 0). This
means that K is a strong grad-set, which is impossible because K contains a rectifiable
loop C.

4.4. Now we prove (b). It suffices to show that K and K_ are strong grad-sets. Indeed,
the volume of K is zero (since K is the graph of a continuous function). By the result cited
in Subsection 4.1, any field 7 € C(K) admitting approximation in C(K) by gradients of
C'-functions can also be approximated in c (K) by gradients of functions harmonic in
a neighborhood of K. We may assume that this neighborhood is simply connected. A
standard application of the Runge theorem yields a sequence of functions h; harmonic

in R3 and such that Vh; — 7 in C(K).

4.5. In order to show that K is a strong grad-set, we apply the statement proved in
Subsection 3.1.1 to the couple K/, K, where K, := K, NC. Let ¥ € C(K.); we show
that ¥ is a quasigradient (on K. ). Since the set K \ K, is metrically disconnected, it
suffices to show that o] K/, isa quasigradient. But this is obvious, because K, is a strong
grad-set (and even a perfect grad-set, by Theorem 3.3). O

4.6. For constructing a function F satisfying (a) and (b) (see Subsection 4.2), we start
with a Weierstrass-type function W: R — R (i.e., W is continuous and nowhere differ-

entiable). Clearly, the total variation \/2 W is infinite whenever a < b. We may assume
that |W| < 1. Putting

Fi(z,y) :=W(W(z) —y), (z,y)€R?,
we prove that

The graph v of Fy is metrically disconnected.
Proof. Let «y be a continuous path in R2,

"y(t) = (Vl(t)a’YQ(t))v te [07 1]7 where Yj € C([Oa 1])

We put g(t) := (71(t),v2(t), F1(y(t))). We must prove that \/ég = 400 unless v(t) =
const. There are two possibilities: 1) w := w(y1) —y2 Z const; 2) w = const. In the first
case we can find «, B such that 0 < o < 8 < 1 and w(a) # w(B). Denoting by J the
segment with endpoints w(a), w(B), we have

Vo=V R =V ww) >\ Ww) >\ W=+

In the second case y; = const (hence, v = const). Indeed, if 0 < oo < 8 < 1 and
71 (a) # 71(B), then

Via=\ =\ wen 2\, W=+,

where I is the segment with endpoints 1 (), 71(8). Thus, we have constructed a met-
rically disconnected graph I' over R2.

4.6.1. Consider the cylinder Z = U x [—2,2] containing the graph I'y of Fi|y. It is
easy to construct a continuous mapping T : Z — B = {z? + y? + 22 < 1} such that
T(C x [-2,2]) = C and Tz\(cx[-2,2) is a diffeomorphism of the set Z \ (C x [-2,2])
onto B\ C preserving the projection to the plane (z,y). Then T'(I'1) is the graph of a
function F' enjoying properties (a) and (b) in Subsection 4.2.
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4.7. In conclusion, we briefly discuss the relationship between grad-sets, curl-sets, and
h-sets. F. L. Nazarov (personal communication) constructed an elegant example of a
plane compact set K with the following properties: 1) K is a curl-set (hence a grad-set);
2) K is not an h-set.

Note that the situation changes drastically if we replace uniform approximation by
LP-approximation. Namely, let K C R? be a compact set, and let p > 1.

The following statements are equivalent:

1) any field of class LP(K) can be approzimated in LP(K) by fields that are solenoidal
near K;

2) any field of class EP(K ) can be approzimated in LP(K ) by fields that are harmonic
near K (see [12]).

For more information about Ep—approximation of vector fields, see also [13, 14].
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