shapefunction_tri

PURPOSE ^

SHAPEFUNCTION_TRI Evaluates the basis function on the reference triangle

SYNOPSIS ^

function phi=shapefunction_tri(z)

DESCRIPTION ^

SHAPEFUNCTION_TRI   Evaluates the basis function on the reference triangle
   PHI = SHAPEFUNCTION_TRI(Z)
   Evaluates the basis function phi(x) on the reference (macro) triangle.
    
   Z is a 2 x 1 vector containing the x and y coordinates in the reference
   triangle.

   PHI contains the evaluated function value.


   This function should not be modified.


   The code is available at http://anmc.epfl.ch/ and described in 
   further detail in 

   A. Abdulle and A. Nonnenmacher
   "A short and versatile finite element multiscale code for
   homogenization problems"
   Computer Methods in Applied Mechanics and Engineering,
   http://dx.doi.org/10.1016/j.cma.2009.03.019

   Please cite this article in any publication describing research
   performed using the software.


   Email           : assyr.abdulle@epfl.ch and achim.nonnenmacher@epfl.ch
   Last updated    : 04/29/2009 with MATLAB 7.4

   FE_HMM2D is Copyright (C) 2009 A. Abdulle and A. Nonnenmacher. 
   The software is provided free for non-commercial use unter the terms of 
   the GNU General Public License. See "copyright.m" for full details.

CROSS-REFERENCE INFORMATION ^

This function calls: This function is called by:

SOURCE CODE ^

0001 function phi=shapefunction_tri(z)
0002 %SHAPEFUNCTION_TRI   Evaluates the basis function on the reference triangle
0003 %   PHI = SHAPEFUNCTION_TRI(Z)
0004 %   Evaluates the basis function phi(x) on the reference (macro) triangle.
0005 %
0006 %   Z is a 2 x 1 vector containing the x and y coordinates in the reference
0007 %   triangle.
0008 %
0009 %   PHI contains the evaluated function value.
0010 %
0011 %
0012 %   This function should not be modified.
0013 %
0014 %
0015 %   The code is available at http://anmc.epfl.ch/ and described in
0016 %   further detail in
0017 %
0018 %   A. Abdulle and A. Nonnenmacher
0019 %   "A short and versatile finite element multiscale code for
0020 %   homogenization problems"
0021 %   Computer Methods in Applied Mechanics and Engineering,
0022 %   http://dx.doi.org/10.1016/j.cma.2009.03.019
0023 %
0024 %   Please cite this article in any publication describing research
0025 %   performed using the software.
0026 %
0027 %
0028 %   Email           : assyr.abdulle@epfl.ch and achim.nonnenmacher@epfl.ch
0029 %   Last updated    : 04/29/2009 with MATLAB 7.4
0030 %
0031 %   FE_HMM2D is Copyright (C) 2009 A. Abdulle and A. Nonnenmacher.
0032 %   The software is provided free for non-commercial use unter the terms of
0033 %   the GNU General Public License. See "copyright.m" for full details.
0034 
0035 %
0036 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
0037 
0038 
0039 % x and y coordinates
0040 x=z(:,1); y=z(:,2);
0041 
0042 phi(:,1)=1-x-y;
0043 phi(:,2)=x;
0044 phi(:,3)=y;
0045 
0046 end

Generated on Tue 21-Jul-2009 10:55:32 by m2html © 2003