I studied Mathematics at the University of Geneva, where I obtained my Master in 1998 and my PhD in 2002 under the supervision of Claude Weber. In 1999, I also spent one semester at Brandeis University with Jerry Levine. After two consecutive Postdoctoral Fellowships of the Swiss NSF, I was Heinz Hopf Lecturer at the ETH Zurich for three years. Since September 2010, I am Maitre d'Enseignement et de Recherche (Senior Lecturer) at the University of Geneva.
Click here for a longer CV, and there for my two greatest achievements.
My research interests are mainly in low-dimensional topology and mathematical physics. More precisely, I have been investigating invariants of knots and links in all their forms, with a special focus on classical invariants such as the Alexander polynomial and the Levine-Tristram signature. My interests also lie in the application of these topological techniques to the understanding of models in statistical physics, such as the dimer and Ising models.
Research papers
- Extended signatures and link concordance
with Livio Ferretti and Iuliia Popova, Proc. Edinburgh Math. Soc.
- A diagrammatic computation of abelian link invariants
with Livio Ferretti and Jessica Liu, Algebr. Geom. Topol. 25 (2025), 5113-5136.
- On the Kashaev signature conjecture
with Livio Ferretti, Fund. Math. 266 (2024), 275-287.
- On Arf invariants of colored links
with Gaetan Simian, Glasg. Math. J.
- Torres-type formulas for link signatures
with Maciej Markiewicz and Wojciech Politarczyk, Michigan Math. J.
- Minimal bipartite dimers and higher genus Harnack curves
with Cédric Boutillier and Béatrice de Tilière, Probab. Math. Phys. 4 (2023), 151-208.
- Graph coverings and twisted operators
with Adrien Kassel, Algebr. Comb. 6 (2023), 75-94.
- The dimer and Ising models on Klein bottles
Ann. Inst. Henri Poincaré D 11 (2024), 503-569.
- Elliptic dimers on minimal graphs and genus 1 Harnack curves
with Cédric Boutillier and Béatrice de Tilière, Comm. Math. Phys. 400 (2023), 1071-1136.
- Isoradial immersions
with Cédric Boutillier and Béatrice de Tilière, J. Graph Theory 99 (2022), 715-757.
- The topological hypothesis for discrete spin models
with Robin Delabays, J. Stat. Mech. Theory Exp. (2019), 033216, 17 pp.
- Identities between dimer partition functions on different surfaces
with Anh Minh Pham, J. Stat. Mech. Theory Exp. (2016), 103101, 22 pp.
- A Burau-Alexander 2-functor on tangles
with Anthony Conway, Fund. Math. 240 (2018), 51-79.
- Splitting numbers and signatures
with Anthony Conway and Kleopatra Zacharova, Proc. Amer. Math. Soc. 144 (2016), 5443-5455.
- Revisiting the combinatorics of the 2D Ising model
with Dmitry Chelkak and Adrien Kassel, Ann. Inst. Henri Poincaré D 4 (2017), 309-385.
- Colored tangles and signatures
with Anthony Conway, Math. Proc. Cambridge Philos. Soc. 164 (2018), 493–530.
- Link Floer Homology categorifies the Conway function
with Mounir Benheddi, Proc. Edinburgh Math. Soc. 59 (2016), 813-836.
- Kac-Ward operators, Kasteleyn operators, and s-holomorphicity on arbitrary surface graphs
Ann. Inst. Henri Poincaré D 2 (2015), 113-168.
- The critical temperature for the Ising model on doubly periodic graphs
with Hugo Duminil-Copin, Electron. J. Probab. 18 (2013), 1-18.
- The critical Ising model via Kac-Ward matrices
Comm. Math. Phys. 316 (2012), 99-126.
- A generalized Kac-Ward formula
J. Stat. Mech. Theory Exp. (2010), P07023, 24 pp.
- Discrete Dirac operators on Riemann surfaces and Kasteleyn matrices
J. Eur. Math. Soc. 14 (2012), 1209-1244.
- Dimers on graphs in non-orientable surfaces
Lett. Math. Phys. 87 (2009), 149-179.
- Dimers on surface graphs and spin structures. II
with Nicolai Reshetikhin, Comm. Math. Phys. 281 (2008), 445-468.
- Dimers on surface graphs and spin structures. I
with Nicolai Reshetikhin, Comm. Math. Phys. 275 (2007), 187-208.
- Slicing Bing doubles
Algebr. Geom. Topol. 6 (2006), 2395-2415.
- A generalization of several classical invariants of links
with Vladimir Turaev, Osaka J. Math. 44 (2007), 1-31.
- Generalized Seifert surfaces and signatures of colored links
with Vincent Florens, Trans. Amer. Math. Soc. 360 (2008), 1223-1264.
- A Lagrangian representation of tangles II.
with Vladimir Turaev, Fund. Math. 190 (2006), 11-27.
- A Lagrangian representation of tangles
with Vladimir Turaev, Topology 44 (2005), 747-767.
- The Conway potential function of a splice
Proc. Edinburgh Math. Soc. 48 (2005), 61-73.
- Studying the multivariable Alexander polynomial by means of Seifert surfaces
Bol. Soc. Mat. Mexicana (3) 10 (2004), 107-115.
- Long Line Knots
with Mathieu Baillif, Arch. Math. 83 (2004), 70-80.
- The Conway potential function of a graph link
Math. Proc. Cambridge Philos. Soc. 136 (2004), 557-563.
- The Alexander module of links at infinity
Int. Math. Res. Not. (2004), 1023-1036.
- A geometric construction of the Conway potential function
Comment. Math. Helv. 79 (2004), 124-146.
- L'homologie de Novikov des entrelacs de Waldhausen
C. R. Acad. Sci. Paris Ser. I Math. 333 (2001), 939-942.
- Computing the writhe of a knot
J. Knot Theory Ramifications 10 (2001), 387-395.
PhD thesis
Miscellaneous
Lecture notes
Lists of my papers can also be found on the arXiv and on MathSciNet.
Current members
Former members
Automne 2025: La page moodle du cours d'Algèbre II se trouve ici, celle du cours de Théorie élémentaire des noeuds là.
Enseignement passé: Printemps 2025: Algèbre II et Maths à PartaG Automne 2024: Algèbre II et Séminaire de Topologie Printemps 2024: Algèbre II Automne 2023: Algèbre II et Chapitres choisis de géométrie Printemps 2023: Géométrie I Automne 2022: Théorie des noeuds Printemps 2022: Algèbre I Printemps 2021: Algèbre I Printemps 2020: Algèbre I Printemps 2019: Algèbre I Printemps 2018: Géométrie II (géométrie différentielle) Automne 2017: Géométrie II (topologie) et Théorie des noeuds Printemps 2017: Géométrie II (géométrie différentielle) Automne 2016: Géométrie II (topologie) et Chapitres choisis de géométrie Printemps 2016: On the dimer and Ising models (see videos here) et Géométrie II (géométrie différentielle) Automne 2015: Géométrie II (topologie) Printemps 2015: Géométrie II (géométrie différentielle) Automne 2014: Algèbre et géométrie III et Théorie de l'homologie Printemps 2014: Géométrie I Automne 2013: Géométrie I et Chapitres choisis de géométrie Printemps 2013: Géométrie I Automne 2012: Géométrie I et Cohomologie Printemps 2012: Géométrie I et Surfaces de Riemann Automne 2011: Géométrie I Printemps 2011: Géométrie I et Topologie algébrique Automne 2010: Géométrie I Frühjahr 2010: Algebra II Herbst 2009: Algebra I Frühjahr 2009: Topologie Fall 2008: Cohomology and Homotopy Theory Spring 2008: Introduction to Knot Theory Fall 2007: Algebraic Topology Spring 2007: Complex Analysis |