I studied Mathematics at the University of Geneva, where I
obtained my Master in 1998 and my PhD in 2002 under the
supervision of Claude Weber. In 1999, I also spent one
semester at Brandeis University with Jerry Levine.
After two consecutive Postdoctoral Fellowships
of the Swiss NSF, I was Heinz Hopf Lecturer at the ETH
Zurich for
three years.
Since September 2010, I am Maitre d'Enseignement et de
Recherche (Senior Lecturer) at the University of Geneva.
Click here for a
longer CV, and there
for my two greatest achievements.
My research interests are mainly in low-dimensional topology
and mathematical physics.
More precisely, I have been investigating invariants of
knots and links in all their forms, with a special interest
in classical invariants such as the Alexander polynomial and
the Levine-Tristram signature. My research has then shifted
towards the application of these topological techniques to
the understanding of models in statistical physics, such as
the dimer and Ising models.
Research papers
- Graph coverings and twisted operators
with Adrien Kassel,
Preprint, December 2020.
- The dimer and Ising models on Klein bottles
Preprint, October 2020.
- Elliptic
dimers on minimal graphs and genus 1 Harnack curves
with Cédric Boutillier and Béatrice de Tilière, Preprint, July
2020.
- Isoradial
immersions
with Cédric Boutillier and Béatrice de Tilière, Preprint, December
2019.
- Topological
complexity of photons’ paths in biological tissues
with Tiziano Binzoni and Fabrizio Martelli, J. Opt. Soc. Am. A
36(11),
1883-1891 (2019).
- The topological
hypothesis for discrete spin models
with Robin Delabays, J.
Stat. Mech. Theory Exp. (2019), 033216, 17 pp.
- Identities
between dimer partition functions on different
surfaces
with Anh Minh Pham, J.
Stat. Mech. Theory Exp. (2016), 103101, 22 pp.
- A
Burau-Alexander 2-functor on tangles
with Anthony Conway, Fund.
Math. 240
(2018), 51-79.
- Splitting
numbers and signatures
with Anthony Conway and Kleopatra Zacharova, Proc. Amer. Math. Soc.
144 (2016),
5443-5455.
- Revisiting
the combinatorics of the 2D Ising model
with Dmitry Chelkak and Adrien Kassel, Ann. Inst. Henri Poincaré
D 4
(2017), 309-385.
- Colored tangles
and signatures
with Anthony Conway, Math.
Proc. Cambridge Philos. Soc. 164 (2018), 493–530.
- Link Floer
Homology categorifies the Conway function
with Mounir Benheddi, Proc.
Edinburgh Math. Soc. 59 (2016), 813-836.
- Kac-Ward
operators, Kasteleyn operators, and s-holomorphicity
on arbitrary surface graphs
Ann. Inst. Henri
Poincaré D 2 (2015), 113-168.
- The critical
temperature for the Ising model on doubly periodic
graphs
with Hugo Duminil-Copin, Electron. J. Probab. 18 (2013), 1-18.
- The critical Ising
model via Kac-Ward matrices
Comm. Math. Phys.
316 (2012),
99-126.
- A generalized
Kac-Ward formula
J. Stat. Mech. Theory
Exp. (2010), P07023, 24 pp.
- Discrete Dirac
operators on Riemann surfaces and Kasteleyn matrices
J. Eur. Math. Soc. 14 (2012),
1209-1244.
- Dimers on graphs
in non-orientable surfaces
Lett. Math. Phys.
87 (2009),
149-179.
- Dimers on surface
graphs and spin structures. II
with Nicolai Reshetikhin, Comm. Math. Phys. 281 (2008),
445-468.
- Dimers on surface
graphs and spin structures. I
with Nicolai Reshetikhin, Comm. Math. Phys. 275 (2007),
187-208.
- Slicing Bing
doubles
Algebr. Geom. Topol.
6 (2006),
2395-2415.
- A generalization
of several classical invariants of links
with Vladimir Turaev, Osaka
J. Math. 44
(2007), 1-31.
- Generalized
Seifert surfaces and signatures of colored links
with Vincent Florens, Trans.
Amer. Math. Soc. 360
(2008), 1223-1264.
- A Lagrangian
representation of tangles II.
with Vladimir Turaev, Fund.
Math. 190
(2006), 11-27.
- A Lagrangian
representation of tangles
with Vladimir Turaev, Topology
44 (2005),
747-767.
- The Conway
potential function of a splice
Proc. Edinburgh Math.
Soc. 48
(2005), 61-73.
- Studying the
multivariable Alexander polynomial by means of Seifert
surfaces
Bol. Soc. Mat.
Mexicana (3) 10
(2004), 107-115.
- Long Line
Knots
with Mathieu Baillif, Arch.
Math. 83
(2004), 70-80.
- The Conway
potential function of a graph link
Math. Proc. Cambridge
Philos. Soc. 136 (2004), 557-563.
- The Alexander
module of links at infinity
Int. Math. Res. Not. (2004),
1023-1036.
- A geometric
construction of the Conway potential function
Comment. Math. Helv.
79 (2004),
124-146.
- L'homologie de
Novikov des entrelacs de Waldhausen
C. R. Acad. Sci. Paris
Ser. I Math. 333 (2001), 939-942.
- Computing the
writhe of a knot
J. Knot Theory
Ramifications 10 (2001), 387-395.
Lecture notes
PhD thesis
Miscellaneous
Lists of my papers can also be found on the arXiv
and on MathSciNet.
Printemps 2021:
La page Moodle du cours d'Algèbre
I se trouvera bientôt ici.
Enseignement passé:
Printemps 2020: Algèbre I
Printemps 2019: Algèbre I
Printemps 2018: Géométrie
II (géométrie différentielle)
Automne 2017: Géométrie
II (topologie) et Théorie des noeuds
Printemps 2017: Géométrie
II (géométrie différentielle)
Automne 2016: Géométrie
II (topologie) et Chapitres choisis de géométrie
Printemps 2016: On the
dimer and Ising models (see videos here
et Géométrie II
(géométrie différentielle)
Automne 2015: Géométrie
II (topologie)
Printemps 2015: Géométrie
II (géométrie différentielle)
Automne 2014: Algèbre et
géométrie III et Théorie
de l'homologie
Printemps 2014: Géométrie
I
Automne 2013: Géométrie I
et Chapitres choisis de
géométrie
Printemps 2013: Géométrie
I
Automne 2012: Géométrie I
et Cohomologie
Printemps 2012: Géométrie
I et Surfaces de
Riemann
Automne 2011: Géométrie I
Printemps 2011: Géométrie
I et Topologie
algébrique
Automne 2010: Géométrie I
Frühjahr 2010: Algebra II
Herbst 2009: Algebra I
Frühjahr 2009: Topologie
Fall 2008: Cohomology and
Homotopy Theory
Spring 2008: Introduction
to Knot Theory
Fall 2007: Algebraic
Topology
Spring 2007: Complex
Analysis
|