David Cimasoni


me Coordonnées:

Section de mathématiques
2-4 rue du Lièvre
1211 Genève 4
Suisse

Téléphone: +41 22 379 1139
Bureau: no 2, 2ème étage

Email: David(dot)Cimasoni(at)unige(dot)ch



Short CV

I studied Mathematics at the University of Geneva, where I obtained my Master in 1998 and my PhD in 2002 under the supervision of Claude Weber. In 1999, I also spent one semester at Brandeis University with Jerry Levine. After two consecutive Postdoctoral Fellowships of the Swiss NSF, I was Heinz Hopf Lecturer at the ETH Zurich for three years.
Since September 2010, I am Maitre d'Enseignement et de Recherche (Senior Lecturer) at the University of Geneva.

For a longer CV, click here.


Research Interests

My research interests are mainly in low-dimensional topology and mathematical physics.
More precisely, I have been investigating invariants of knots and links in all their forms, with a special interest in classical invariants such as the Alexander polynomial and the Levine-Tristram signature. Since several years, my research has shifted towards the application of these topological techniques to the understanding of models in statistical physics, such as the dimer and Ising models.


Publications

Research papers

  • [pdf][ps] The topological hypothesis for discrete spin models
    (with Robin Delabays)
    Preprint
  • [pdf][ps] Identities between dimer partition functions on different surfaces
    (with Anh Minh Pham)
    J. Stat. Mech. Theory Exp. (2016), 103101, 22 pp.
  • [pdf][ps] A Burau-Alexander 2-functor on tangles
    (with Anthony Conway)
    Fund. Math. 240 (2018), 51-79.
  • [pdf][ps] Splitting numbers and signatures
    (with Anthony Conway and Kleopatra Zacharova)
    Proc. Amer. Math. Soc. 144 (2016), 5443-5455.
  • [pdf][ps] Revisiting the combinatorics of the 2D Ising model
    (with Dmitry Chelkak and Adrien Kassel)
    Ann. Inst. Henri Poincaré D 4 (2017), 309-385.
  • [pdf][ps] Colored tangles and signatures
    (with Anthony Conway)
    Math. Proc. Cambridge Philos. Soc. 164 (2018), 493–530.
  • [pdf][ps] Link Floer Homology categorifies the Conway function
    (with Mounir Benheddi)
    Proc. Edinburgh Math. Soc. 59 (2016), 813-836.
  • [pdf][ps] Kac-Ward operators, Kasteleyn operators, and s-holomorphicity on arbitrary surface graphs
    Ann. Inst. Henri Poincaré D 2 (2015), 113-168.
  • [pdf][ps] The critical temperature for the Ising model on doubly periodic graphs
    (with Hugo Duminil-Copin)
    Electron. J. Probab. 18 (2013), 1-18.
  • [pdf][ps] The critical Ising model via Kac-Ward matrices
    Comm. Math. Phys. 316 (2012), 99-126.
  • [pdf][ps] A generalized Kac-Ward formula
    J. Stat. Mech. Theory Exp. (2010), P07023, 24 pp.
  • [pdf][ps] Discrete Dirac operators on Riemann surfaces and Kasteleyn matrices
    J. Eur. Math. Soc. 14 (2012), 1209-1244.
  • [pdf][ps] Dimers on graphs in non-orientable surfaces
    Lett. Math. Phys. 87 (2009), 149-179.
  • [pdf][ps] Dimers on surface graphs and spin structures. II
    (with Nicolai Reshetikhin)
    Comm. Math. Phys. 281 (2008), 445-468.
  • [pdf][ps] Dimers on surface graphs and spin structures. I
    (with Nicolai Reshetikhin)
    Comm. Math. Phys. 275 (2007), 187-208.
  • [pdf][ps] Slicing Bing doubles
    Algebr. Geom. Topol. 6 (2006), 2395-2415.
  • [pdf][ps] A generalization of several classical invariants of links
    (with Vladimir Turaev)
    Osaka J. Math. 44 (2007), 1-31.
  • [pdf][ps] Generalized Seifert surfaces and signatures of colored links
    (with Vincent Florens)
    Trans. Amer. Math. Soc. 360 (2008), 1223-1264.
  • [pdf][ps] A Lagrangian representation of tangles II.
    (with Vladimir Turaev)
    Fund. Math. 190 (2006), 11-27.
  • [pdf][ps] A Lagrangian representation of tangles
    (with Vladimir Turaev)
    Topology 44 (2005), 747-767.
  • [pdf] [ps] The Conway potential function of a splice
    Proc. Edinburgh Math. Soc. 48 (2005), 61-73.
  • [pdf] [ps] Studying the multivariable Alexander polynomial by means of Seifert surfaces
    Bol. Soc. Mat. Mexicana (3) 10 (2004), 107-115.
  • [pdf] [ps] Long Line Knots
    (with Mathieu Baillif)
    Arch. Math. 83 (2004), 70-80.
  • [pdf][ps] The Conway potential function of a graph link
    Math. Proc. Cambridge Philos. Soc. 136 (2004), 557-563.
  • [pdf][ps] The Alexander module of links at infinity
    Int. Math. Res. Not. (2004), 1023-1036.
  • [pdf][ps] A geometric construction of the Conway potential function
    Comment. Math. Helv. 79 (2004), 124-146.
  • [pdf][ps] L'homologie de Novikov des entrelacs de Waldhausen
    C. R. Acad. Sci. Paris Ser. I Math. 333 (2001), 939-942.
  • [pdf][ps] Computing the writhe of a knot
    J. Knot Theory Ramifications 10 (2001), 387-395.

Lecture notes

  • [pdf][ps] Géométrie II (Topologie générale)
    Polycopié du cours de Géométrie II, Automne 2016.
  • [pdf][ps] Géométrie I
    Polycopié du cours de Géométrie I, Printemps 2014.
  • [pdf][ps] The geometry of dimer models
    Lecture notes of a minicourse given in Dijon (2014) and in TU Berlin (2017).

PhD thesis

  • [pdf][ps] Alexander invariants of multilinks, June 2002.

Miscellaneous


Lists of my papers can also be found on the arXiv and on MathSciNet.


PhD students

  • Mounir Benheddi: Khovanov homology of torus links: structure and computations (pdf), December 2017, with Paul Turner.
  • Anthony Conway: Invariants of colored links and generalizations of the Burau representation (pdf), October 2017.
  • Anh Minh Pham: The dimer and Ising models on non-orientable surfaces (pdf), August 2017.


Enseignement:

Printemps 2019:
La page Chamilo du cours d'Algèbre I se trouvera bientôt ici.

Enseignement passé:
Printemps 2018: Géométrie II (géométrie différentielle)
Automne 2017: Géométrie II (topologie) et Théorie des noeuds
Printemps 2017: Géométrie II (géométrie différentielle)
Automne 2016: Géométrie II (topologie) et Chapitres choisis de géométrie
Printemps 2016: On the dimer and Ising models (see videos here) et Géométrie II (géométrie différentielle)
Automne 2015: Géométrie II (topologie)
Printemps 2015: Géométrie II (géométrie différentielle)
Automne 2014: Algèbre et géométrie III et Théorie de l'homologie
Printemps 2014: Géométrie I
Automne 2013: Géométrie I et Chapitres choisis de géométrie
Printemps 2013: Géométrie I
Automne 2012: Géométrie I et Cohomologie
Printemps 2012: Géométrie I et Surfaces de Riemann
Automne 2011: Géométrie I
Printemps 2011: Géométrie I et Topologie algébrique
Automne 2010: Géométrie I
F
rühjahr 2010: Algebra II
Herbst 2009: Algebra I
Fr
ühjahr 2009: Topologie
Fall 2008: Cohomology and Homotopy Theory
Spring 2008: Introduction to Knot Theory
Fall 2007: Algebraic Topology
Spring 2007: Complex Analysis