
 

Article

Reference

Brain dynamics of upstream perceptual processes leading to visual

object recognition: A high density ERP topographic mapping study

SCHETTINO, Antonio, et al.

Abstract

Recent studies suggest that visual object recognition is a proactive process through which

perceptual evidence accumulates over time before a decision can be made about the object.

However, the exact electrophysiological correlates and time-course of this complex process

remain unclear. In addition, the potential influence of emotion on this process has not been

investigated yet. We recorded high density EEG in healthy adult participants performing a

novel perceptual recognition task. For each trial, an initial blurred visual scene was first

shown, before the actual content of the stimulus was gradually revealed by progressively

adding diagnostic high spatial frequency information. Participants were asked to stop this

stimulus sequence as soon as they could correctly perform an animacy judgment task.

Behavioral results showed that participants reliably gathered perceptual evidence before

recognition. Furthermore, prolonged exploration times were observed for pleasant, relative to

either neutral or unpleasant scenes. ERP results showed distinct effects starting 280 ms

post-stimulus onset in distant brain regions during [...]

SCHETTINO, Antonio, et al. Brain dynamics of upstream perceptual processes leading to visual

object recognition: A high density ERP topographic mapping study. NeuroImage, 2011, vol. 55,

no. 3, p. 1227-1241

DOI : 10.1016/j.neuroimage.2011.01.009

Available at:

http://archive-ouverte.unige.ch/unige:23817

Disclaimer: layout of this document may differ from the published version.

 1 / 1

http://archive-ouverte.unige.ch/unige:23817


Brain Dynamics of Upstream Perceptual Processes 1 

 

Running head: BRAIN DYNAMICS OF VISUAL OBJECT RECOGNITION 

 

Brain Dynamics of Upstream Perceptual Processes Leading to Visual Object 

Recognition: A High Density ERP Topographic Mapping Study 

 

Antonio Schettino
1
, Tom Loeys

2
, Sylvain Delplanque

3
 & Gilles Pourtois

1
 

 

(1)  Department of Experimental-Clinical and Health Psychology, Ghent University; (2) 

Department of Data Analysis, Ghent University; (3) Swiss Center for Affective Sciences, 

University of Geneva 

 

Corresponding author: 

Gilles Pourtois 

Department of Experimental-Clinical and Health Psychology 

Ghent University 

Henri Dunantlaan 2 

9000 Ghent 

Belgium 

Phone: +32 9 264 9144 

Email: gilles.pourtois@ugent.be 

  

*3. Manuscript
Click here to view linked References

http://ees.elsevier.com/ynimg/viewRCResults.aspx?pdf=1&docID=15158&rev=1&fileID=601886&msid={A7AEA51E-D225-44A4-8A5C-43E8AE3C9180}


Brain Dynamics of Upstream Perceptual Processes 2 

 

Abstract 

Recent studies suggest that visual object recognition is a proactive process through which 

perceptual evidence accumulates over time before a decision can be made about the object. 

However, the exact electrophysiological correlates and time-course of this complex process 

remain unclear. In addition, the potential influence of emotion on this process has not been 

investigated yet. We recorded high density EEG in healthy adult participants performing a novel 

perceptual recognition task. For each trial, an initial blurred visual scene was first shown, before 

the actual content of the stimulus was gradually revealed by progressively adding diagnostic high 

spatial frequency information. Participants were asked to stop this stimulus sequence as soon as 

they could correctly perform an animacy judgment task. Behavioral results showed that 

participants reliably gathered perceptual evidence before recognition. Furthermore, prolonged 

exploration times were observed for pleasant, relative to either neutral or unpleasant scenes. ERP 

results showed distinct effects starting 280 ms post-stimulus onset in distant brain regions during 

stimulus processing, mainly characterized by: (i) a monotonic accumulation of evidence, 

involving regions of the posterior cingulate cortex/parahippocampal gyrus, and (ii) true 

categorical recognition effects in medial frontal regions, including the dorsal anterior cingulate 

cortex. These findings provide evidence for the early involvement, following stimulus onset, of 

non-overlapping brain networks during proactive processes eventually leading to visual object 

recognition. 

 

Keywords: visual object recognition, accumulation of evidence, dorsal ACC, parahippocampal 

gyrus, posterior cingulate cortex  
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Brain Dynamics of Upstream Perceptual Processes Leading to Visual Object Recognition: A 

High Density ERP Topographic Mapping Study 

Introduction 

Visual object recognition is a fast, accurate and effortless process. Despite swift or dramatic 

variations in the retinal input (i.e. due to modifications in orientation, size, appearance, 

viewpoint, or context), human’s ability to readily detect and recognize a multitude of visual 

objects in the environment is hardly challenged (Bar, 2003; Biederman & Bar, 1999). Many 

studies and models have emphasized the sequential property of visual computations leading to 

perceptual decision making, from the analysis of sensory information to the selection of the 

behavioral outcome that best maximizes the expected utility (Biederman, 1987; Marr, 1982; 

Opris & Bruce, 2005). According to the dominant framework, the visual system evaluates in a 

probabilistic fashion the available information about various features of the input image, thereby 

making inferences about its content and preparing possible courses of action (Hegdé, 2008). 

Classical neurophysiological models postulate that fundamental visual features of the input 

image are initially processed in lower-level cortical areas of the occipital and infero-temporal 

cortex, after which they are used to generate an abstract visual representation of the object. 

Recognition (and subsequent motor execution of the congruent response) is achieved when this 

representation is successfully matched with templates stored in memory (Biederman, 1987; 

Palmer, 1999; Ranganath & Rainer, 2003; Riesenhuber & Poggio, 1999; Ungerleider & Mishkin, 

1982). 

The predominant role of bottom-up perceptual processes leading to recognition is clearly 

stressed in these hierarchical models. However, top-down modulatory effects may also influence 

visual object recognition mechanisms. They include selective attention (Blair, Watson, Walshe, 
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& Maj, 2009; Treisman & Kanwisher, 1998), task relevance (Egner & Hirsch, 2005), prior 

probability of encounter (Summerfield & Egner, 2009), working memory (Ranganath, Cohen, 

Dam, & D'Esposito, 2004), contextual information (Bar, 2004; Oliva & Torralba, 2007), as well 

as the monitoring of the decision’s outcome (Ridderinkhof, Ullsperger, Crone, & Nieuwenhuiss, 

2004; Ullsperger, Volz, & von Cramon, 2004). Hence, the rapid bottom-up processes leading to 

visual object recognition could be assisted by the online activation of abstract information -- 

stored in higher-level brain regions -- primarily recruited to speed up the concurrent ongoing 

processing in lower-level visual areas, with the aim to limit the number of computations 

necessary to eventually identify an object (Bar et al., 2006; Ganis, Schendan, & Kosslyn, 2007). 

Recent theoretical accounts emphasized the role of expectations in visual recognition (Bar, 

2009; Kersten, Mamassian, & Yuille, 2004; Summerfield & Egner, 2009; Yuille & Kersten, 

2006). In these models, it is hypothesized that the active use of prior information about the most 

probable visual percept in the forthcoming sensory environment is at work in order to guide the 

rapid acquisition of diagnostic visual information (i.e. invariant and expected aspects in the 

environment do not need to be processed thoroughly), as well as to facilitate the interpretation of 

ambiguous stimuli. Predictive coding models of visual recognition (Friston, 2005; Friston & 

Kiebel, 2009; Grossberg, 2009; Rao & Ballard, 1999; Serences, 2008) argue that feed-forward 

information coming from early visual areas is compared, at each stage of the visual processing 

hierarchy, to top-down expectations whose aim is to predict the responses at the next lower level, 

primarily through recurrent or feedback connections (see also Di Lollo, Enns, & Rensink, 2000; 

Enns & Lleras, 2008). If this comparison results in an erroneous output, an error signal is sent 

back to the higher level via feedforward connections. This error signal is then used to correct the 

estimate of the input signal at each level (Rao & Ballard, 1999; Serences, 2008). Expected and 
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observed information are iteratively adjusted until the visual system is able to settle on a single 

perceptual interpretation of the sensory input (Summerfield & Egner, 2009). A plausible neural 

mechanism underlying the triggering of this top-down facilitation in object recognition has 

recently been proposed by Moshe Bar (Bar, 2003, 2004, 2007, 2009). According to this model, a 

partially analyzed version of the input image, mainly comprised of low spatial frequency (LSF) 

information, is projected rapidly from early visual cortex directly to orbitofrontal (OFC) and 

parahippocampal (PHC) areas, possibly via a fast dorsal magnocellular route. In the PHC, this 

blurred image activates the most probable (experience-driven) guesses about the context frame 

that needs to be triggered. This contextual information is projected to the infero-temporal cortex, 

where a set of visual associations corresponding to the relevant context is activated. In parallel, 

the visual information conveyed by the same scene -- here the allocation of attention is on the 

target object -- would be sufficient to rapidly activate the most likely interpretations of the input 

image in the OFC. The integration of the representations of the specific context and the candidate 

interpretations of the target object would in turn result in the reliable selection of a single 

identity, which can be further refined with specific detail gradually conveyed by high spatial 

frequency (HSF) information (Bar, 2004). Consistent with this framework, Peyrin et al. (2010) 

combined fMRI and ERPs to explore the prioritization of LSF in the processing of visual input, 

and found that higher order areas in frontal and temporo-parietal regions responded more to LSF 

stimuli when presented first, whereas occipital visual cortex responded more to HSF stimuli 

when presented after LSF stimuli (Bar, 2003; Bullier, 2001; Hegdé, 2008). Hence, the use of 

different imaging methods confirmed a “coarse-to-fine” processing of visual input (Hegdé, 2008; 

Lomber, 2002; Navon, 1977; Sanocki, 1993; Schyns & Oliva, 1994): the quick processing of 
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LSF in higher order frontal or temporal brain regions could directly influence scene recognition 

by biasing perceptual processes in object-selective visual areas. 

Expectations may lower the threshold that needs to be overcome to make a decision in favor 

of one option, similar to what accumulator models of decision making propose (Gold & Shadlen, 

2007; Ratcliff & McKoon, 2008). Such models have proven highly effective in describing 

performance in recognition memory (Ratcliff, 1978), economic decisions (Sanfey, Loewenstein, 

McClure, & Cohen, 2006), semantic (Ratcliff & McKoon, 1982) and lexical (Ratcliff, Thapar, 

Gomez, & McKoon, 2004) tasks, as well as sensory discrimination (Gold & Shadlen, 2007). 

According to these models, incoming information is accumulated over time, evaluated and 

assigned to a response option: the actual decision is made when evidence in favor of one of the 

two responses exceeds a threshold. This framework has been successfully applied in studies on 

nonhuman primates (Hanes & Schall, 1996; Kim & Shadlen, 1999; Shadlen & Newsome, 2001; 

Tanaka, 1996), eventually providing a useful mean to link neurophysiology with behavior. 

Important hints on the brain regions underlying proactive perceptual processes leading to visual 

object recognition in humans have also been obtained more recently, using mainly fMRI and 

gradual or progressive stimulus revelation tasks (Carlson, Grol, & Verstraten, 2006; Heekeren, 

Marrett, Bandettini, & Ungerleider, 2004; Heekeren, Marrett, & Ungerleider, 2008; James, 

Humphrey, Gati, Menon, & Goodale, 2000; Ploran et al., 2007; Wheeler, Petersen, Nelson, 

Ploran, & Velanova, 2008). Among these studies, Ploran, et al. (2007) used an elegant procedure 

enabling a gradual revelation of masked stimuli over eight discrete and consecutive steps. 

Participants had to press a button as soon as they could identify the pictures’ content with a 

reasonable degree of confidence. Interestingly, Ploran, et al. (2007) found that different brain 

areas showed distinct effects during this progressive revelation task. Three different patterns of 
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brain activation were identified. For several posterior occipital regions, activity increased 

monotonically as a function of the amount of visual information entering the visual system 

(sensory processors). By contrast, a gradual increase in activity with a distinctive peak at the 

time of recognition was found in inferior temporal, frontal and parietal regions (including the 

bilateral fusiform gyrus and the DLPFC), consistent with an accumulation of evidence process 

which may be necessary to recognize the identity of the target object (accumulators). Finally, in 

many regions of medial frontal cortex (including the dorsal region of the anterior cingulate 

cortex, dACC, and the anterior insula), activity remained close to baseline until the moment of 

actual recognition, suggesting their involvement in decision-related processes that accompany 

overt visual object recognition. These latter fMRI results are important, as they inform about 

upstream brain mechanisms leading to visual object recognition and their different functions, 

with non-overlapping areas involved in accumulation of evidence vs. moment of recognition 

(Ploran et al., 2007). However, since these results were obtained using fMRI techniques, the 

electrophysiological correlates and actual time-course of these upstream perceptual or decision-

related effects during visual object recognition remain unclear. 

The goal of this study was to use a novel stimulus revelation task and explore, using high 

density EEG in healthy adult participants, the precise electrophysiological correlates of upstream 

processes leading to visual object recognition. More specifically, we sought to investigate 

whether different ERP response profiles could be evidenced, consistent with the assumption of 

accumulation of evidence prior to visual object recognition subserved by posterior occipital or 

temporal brain regions, in comparison with medial frontal areas which might show categorical 

moment-of-recognition effects (see Ploran, et al., 2007). For this purpose, we designed a new 

task enabling a progressive revelation of the stimulus content, while neural events prior to actual 
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recognition were investigated on a trial-by-trial basis using the millisecond time resolution 

provided by EEG. Based on the psychological models and neuroscience evidence reviewed here 

above, we hypothesized that upstream perceptual effects leading to visual object recognition 

could be twofold (Gold & Shadlen, 2007; Ratcliff & McKoon, 2008). First, we surmised ERP 

effects reflecting the accumulation of perceptual evidence over time, with the main neural 

generators being localized in posterior brain regions, including the occipital and temporal 

cortices (Ploran et al., 2007). Consistent with this view, a linear relationship between the 

electrophysiological signal and the amount of visual input was expected. In contrast, we 

predicted that medial frontal brain regions (e.g. dorsal ACC, see Ploran, et al., 2007) might also 

provide an important mechanism at stake during visual object recognition, showing moment-of-

recognition effects characterized by a non-linear and abrupt change in the amplitude of the ERP 

signal occurring close to actual recognition. As a secondary question, we also investigated 

whether the emotional content of the stimulus/scene might influence these upstream perceptual 

processes leading to recognition, consistent with previous imaging studies showing reciprocal 

interaction effects between regions involved in the processing of emotions (including the 

amygdala) and more posterior regions implicated in visual object recognition (Sabatinelli, Lang, 

Bradley, Costa, & Keil, 2009; Vuilleumier, 2005). Hence, we presented participants with 

standard neutral and emotional scenes (whose content was progressively revealed) and tested for 

a differential neural effect likely triggered by the emotional content prior to actual recognition. 

Whereas previous studies have found reliable modulation of early and late ERP components 

following stimulus onset as a function of the emotional content of the stimulus (either for 

valence or arousal dimensions, see Schupp, et al., 2000; Schupp, Junghöfer, Weike & Hamm, 

2003; Carretié, Hinojosa, Martin-Loeches, Mercado, & Tapia, 2004; D'Hondt, et al., 2010; 
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Delplanque, Lavoie, Hot, Silvert, & Sequeira, 2004; Oloffson, Nordin, Sequeira, & Polich, 

2008), to our knowledge, no ERP study has systematically explored whether upstream or 

anticipatory perceptual effects during visual object recognition may be influenced by the rapid 

decoding of the emotional content of the input stimulus, likely based on the selective processing 

of low-spatial frequency/impoverished visual cues. Accordingly, the goal of our study was also 

to verify whether the rapid processing of the emotional content of the scene (presumably based 

on LSF cues; see Vuilleumier, Armony, Driver, & Dolan, 2003; Pourtois, Dan, Grandjean, 

Sander, & Vuilleumier, 2005; Bar, 2003, 2004) could alter upstream brain processes underlying 

proactive mechanisms of visual object recognition. 

Methods 

Participants 

Nineteen psychology students (14 women, mean age 21 years, range 17-33) were recruited to 

freely participate in the study, which was approved by the local university ethical committee. All 

participants were native Dutch speaking, right-handed, had normal or corrected-to-normal vision, 

with no history of neurological or psychiatric disorders. All volunteers gave informed written 

consent prior to their participation, and were paid 20€. 

Stimuli 

Two hundred and thirty-four pictures were selected from the International Affective Picture 

System (IAPS; Lang, Bradley & Cuthbert, 2005), a standardized database containing 

emotionally-evocative pictures that depict objects and scenes across a wide range of categories 

and situations. The IAPS manual provides normative values for the basic dimensions of emotion 

-- including arousal and valence -- as rated by the Self-Assessment Manikin (SAM) on a scale 

from 1 to 9 (Bradley & Lang, 1994). Since there are gender differences in both valence and 



Brain Dynamics of Upstream Perceptual Processes 10 

 

arousal ratings, we selected two sets of pictures in order to balance the arousal levels of the 

emotional pictures across male vs. female participants. Each set consisted of 138 pictures. 

Among these, 42 were shared between male and female participants. The pictures were divided 

into three emotion categories, according to their pre-defined valence scores: neutral, unpleasant 

and pleasant (see Table 1). For each category (N = 46), half of the pictures contained living 

objects (i.e. human beings or animals) while the other half did not (i.e. landscapes or artifacts)
1
. 

We explicitly selected pictures that were neither highly pleasant (i.e. erotic scenes) nor highly 

unpleasant (i.e. mutilations), because such pictures could lead to specific emotion reactions 

which may be different between male and female participants (Lithari et al., 2010; Proverbio, 

Adorni, Zani, & Trestianu, 2009; Sabatinelli, Flaisch, Bradley, Fitzsimmons, & Lang, 2004). We 

also selected ten additional neutral pictures that were used during the practice session (see 

footnote) and were not included in the subsequent statistical analyses. Furthermore, 18 pictures 

were scrambled and their content made meaningless. These scrambled pictures were eventually 

used as “catch” trials to ensure that participants correctly attended to the content of the pictures 

before taking a decision. 

The pre-selected original IAPS pictures (1024 x 768 pixels, corresponding to 20° x 15° of 

visual angle at a distance of 75 cm) were first converted to grayscale. Each picture was then 

bandpass filtered (using ImageJ v1.44 software, http://rsb.info.nih.gov/ij/) according to the 

spatial frequency bands put forward by Delplanque, N'diaye, Scherer, & Grandjean (2007) (see 

Table 2). This procedure resulted in six different levels of filtering for each and every picture. 

Each of these levels reliably differed from one another depending on the actual content of low 

and high spatial frequency information (see Figure 1A). 

Procedure 

http://rsb.info.nih.gov/ij/
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Participants were tested individually in a small, dimly lit room, and seated at 75cm in front of 

a 19" CRT computer screen (refresh rate 100 Hz). They were first asked to complete a 

practice/familiarization block containing 10 trials. Then, they started the experimental session, 

which was divided into four blocks (separated by a one-minute pause), each containing 67-68 

trials. Each trial had the same underlying structure (see Figure 1A). It began with a fixation cross 

displayed for 250ms in the center of the screen. Then the first (blurred) image level of a given 

picture was presented for 500ms, followed by a 250ms blank screen. Next, the second image 

level of the same picture (containing more HSF information) was immediately presented for 500 

ms, plus 250 ms blank screen, and the same procedure was repeated until the presentation of the 

sixth image level (i.e. intact/unfiltered picture). Hence, this procedure resulted in a progressive 

and predictive revelation of the image content by adding, in a stepwise fashion, high spatial 

frequency information to an initial blurred and meaningless picture. The inter-trial interval (ITI) 

was set to 1000ms. Participants were instructed to provide two consecutive responses. First, they 

were asked to press the spacebar key (on a standard AZERTY keyboard) with their dominant 

right hand as soon as they felt they could decide, with sufficient confidence, whether the scene 

contained a living object or not (Response1). Pressing the spacebar key immediately interrupted 

the presentation of the stimuli. 500 ms after pressing the spacebar, participants were required to 

validate their choice and to perform a two-alternative forced choice task. They were asked to 

press the “L” key of the keyboard if the scene contained a living object, or alternatively the “N” 

key if it did not contain any living object (Response2). This dual registration procedure enabled 

us to timely separate early recognition effects (Response1) from the overt discrimination of the 

scene (Response2). Importantly, the actual discrimination (Response2) was required to 

distinguish correct from incorrect early key presses (when looking retrospectively at ERP data 
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recorded around the onset of Response1, see here below). Hence, ERP analyses were primarily 

focused on neural events taking place prior to Response1, when the actual visual discriminations 

(based on Response2) turned out to be accurate and errors were removed from the analyses. 

Because Response1 always required a simple key press, this procedure minimized the potential 

contamination of ERP data by the activation of competing responses (living vs. non-living). 

Participants were instructed to find a good balance between high accuracy and the execution of 

speeded responses. Note that they were not encouraged to respond before the presentation of the 

last/sixth (unfiltered) picture. For catch trials (i.e. scrambled pictures), a non-living response 

(Response2) was expected. 

Since we were primarily interested in ERP effects which might foreshadow the actual 

detection and recognition of a scene, we had, as a prerequisite, to include enough trials per 

condition (neutral, unpleasant and pleasant) to be able to eventually compute reliable ERP 

waveforms per condition and for each image level separately. However, we only had a limited 

set of pictures which were balanced with regard to the living vs. non-living attribute. For this 

reason, unbeknown to participants, each picture was presented twice during the experimental 

session. There was a random and unpredictable time lag (i.e. 4-15 intervening images, M = 10, 

SD = 3) between first presentations and repetitions. As expected, behavioral results showed 

significant earlier scene recognition for repetitions, relative to first presentations, and this 

priming effect was the same for neutral, pleasant and unpleasant scenes (all ps < .05). However, 

separate analyses of the ERP data for these two conditions (first presentations vs. repetitions) did 

not reveal any significant difference. Accordingly, they were collapsed in the statistical analyses 

to increase the signal-to-noise ratio. 
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Stimulus presentation and behavioral response recordings were controlled using E-Prime 

software (V2.0., http://www.pstnet.com/products/e-prime/). 

Questionnaires 

At the end of the experimental session, participants were asked to fill out three different 

questionnaires, in order to assess whether specific affective or personality traits might be related 

to task performance and/or our ERP effects. Trait anxiety levels were measured by means of the 

Dutch version of the State-Trait Anxiety Inventory, trait characteristics (Van der Ploeg, Defares, 

& Spielberger, 1979). Participants also completed a recent Dutch version of the Need For 

Closure Scale (Roets & Van Hiel, 2007), which gave an estimate of the participant’s tendency or 

need to obtain any answer, as opposed to tolerating ambiguity. Finally, we also administered the 

Need For Affect Scale (Maio & Esses, 2001) in order to obtain an independent measure of the 

general motivation of participants to either approach or avoid situations that are emotion-

inducing. However, we found no significant correlation between the scores obtained for each of 

the three questionnaires and either the behavioral or ERP results obtained during this progressive 

stimulus revelation task, presumably because of the low standard deviation of the scores obtained 

for each questionnaire (see Table 3). 

EEG data acquisition and pre-processing 

Electroencephalographic (EEG) activity was continuously recorded using a BIOSEMI Active-

Two system (BioSemi, Inc., Netherlands; http://www.biosemi.com) by means of 128 active 

electrodes fitted into a stretching cap and following the BioSemi ABCD positioning system (i.e. 

electrode positions are radially equidistant from CZ; http://www.biosemi.com/headcap.htm). 

Two electrodes, the common mode sense (CMS) active electrode and the driven right leg (DRL) 

passive electrode, were used as reference and ground electrodes, respectively 

http://www.pstnet.com/products/e-prime/
http://www.biosemi.com/
http://www.biosemi.com/headcap.htm
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(http://www.biosemi/faq/cms_and_drl.htm). Vertical electro-oculograms (EOG) were monitored 

using two additional electrodes placed in the inferior and superior areas of the left orbit. EEG 

and EOG recordings were sampled at 512 Hz. 

ERPs of interest were computed offline using Brain Vision Analyzer 2.0 (Brain Products™ 

GmbH, Munich, Germany; http://www.brainproducts.com/analyzer2_release.php). First, a 

common average reference was applied. Next, -100/+750 ms epochs were created around the 

onset of the visual stimulus. Afterwards, all the segments were baseline corrected using the pre-

stimulus interval (100ms), before ocular correction was performed (Gratton, Coles, & Donchin, 

1983). Artifact rejection was then carried out (mean amplitude of ±76.32µV scale across 

participants) to eliminate segments contaminated by artifacts such as residual blinks or muscle 

activity. Approximately one-third of the data (27.9%) were discarded using these strict criteria. 

Finally, averaging of the segments was performed, separately for each condition, and a 1-30 Hz 

bandpass filter was applied to the individual averaged data. Since we were primarily interested in 

neural processes occurring before the actual recognition of the scene, we used the time of 

detection (Response1) as the initial reference point in our analyses, and looked at stimulus-

locked ERP effects backwards. Only recognitions (Response1) which turned out to be accurate 

(based on Response2) were included in our ERP analyses (see behavioral results below). 

Following this procedure, four different epochs were computed for each individual scene: (1) -

100/+750 ms around the stimulus onset that was recognized during this specific time window 

(“Recognition”); (2) -100/+750 ms  around the stimulus onset which immediately preceded 

recognition (“One image before” recognition); (3) -100/+750 ms around the stimulus onset for 

the stimulus appearing two images before recognition (“Two images before” recognition); (4) -

100/+750 ms around the stimulus onset for the stimulus appearing three images before 

http://www.biosemi/faq/cms_and_drl.htm
http://www.brainproducts.com/analyzer2_release.php
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recognition (“Three images before” recognition). Epochs of 750 ms following stimulus were 

used because they encompassed the duration of the stimulus itself (500 ms), as well as the 

subsequent 250ms interval. Using this procedure, we could thus look at stimulus-locked ERP 

effects for image levels that preceded actual recognition, with a gradual distance relative to this 

event (up to three images before recognition). Note that this specific data analysis allowed us to 

look at brain processes consistently foreshadowing visual object recognition, bearing in mind 

that, across trials, the actual decision could be based on different accumulations of perceptual 

evidence (i.e. the proportion of correct Responses1 turned out to be the largest at image levels 

three, four and five, see behavioral results below). Furthermore, we computed different ERP 

waveforms as a function of the emotional valence of the scenes. As a result, 12 individual 

averages were computed for each participant : (1) Neutral, Recognition (number of segments 

after pre-processing: M = 50, SD = 9); (2) Neutral, One image before (M = 58, SD = 9); (3) 

Neutral, Two images before (M = 58, SD = 8); (4) Neutral, Three images before (M = 43, SD = 

9); (5) Unpleasant, Recognition (M = 44, SD = 8); (6) Unpleasant, One image before (M = 52, 

SD = 7); (7) Unpleasant, Two images before (M = 49, SD = 7); (8) Unpleasant, Three images 

before (M = 37, SD = 10); (9) Pleasant, Recognition (M = 47, SD = 10); (10) Pleasant, One 

image before (M = 56, SD = 10); (11) Pleasant, Two images before (M = 52, SD = 9); (12) 

Pleasant, Three images before (M = 47, SD = 10). 

Analysis of behavioral data  

Accuracy was expressed as percentage of correct responses. Since these image levels were not 

independent of each other (each image relies on the visual information conveyed by previous 

levels), cumulative percentages were calculated. Using this procedure, we obtained a 

psychometric curve showing the evolution of the recognition accuracy across the six image 
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levels for each condition separately. Repeated measures analyses of variance (ANOVAs) with 

two factors (emotion: three levels; image level: six levels) and post-hoc t-tests were first 

employed to assess differences in recognition accuracy between conditions. The level of 

significance for all the analyses was set to p < 0.05. In addition, to verify whether the 

psychometric curve was shifted as a function of the emotional content of the scene (pleasant, 

neutral or unpleasant), we also used a proportional odds model (Agresti, 2007), a regression 

model for ordinal dependent variables (recognition from image level 1,..., recognition from 

image level 6). This data analysis allows to model the cumulative probability up to and including 

recognition from image level k (k = 1, ?, 5). The derived odds ratio expresses how much the odds 

of recognition from image level k or earlier is increased (if larger than 1) or decreased (if smaller 

than 1) across different emotional contents, and thus provides a single number capturing the shift 

in psychometric curve. To account for dependencies of trials within the same subject, a multi-

level version of the proportional odds model was used here. 

Analyses of ERP data 

In this study, reference-free topographic analyses were carried out to objectively characterize 

differences between conditions and image levels. The basic principles of this method have been 

described extensively elsewhere (see Lehmann & Skrandies, 1980; Michel, Seeck, & Landis, 

1999; Michel, et al., 2001; Murray, Brunet, & Michel, 2008; Pourtois, Delplanque, Michel, & 

Vuilleumier, 2008). The added value of this method, relative to a more traditional ERP peak 

analysis (see Picton, et al., 2000), is that it enables to reveal global differences between 

experimental conditions without a priori selecting a few channels or time frames. All channels 

and time frames are used concurrently in the analysis. Topographic analyses were performed 

using CARTOOL software (version 3.43; http://brainmapping.unige.ch/Cartool.htm). For each 

http://brainmapping.unige.ch/Cartool.htm
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participant separately, we first interpolated noisy channels using a spherical splines 

transformation (Perrin, Pernier, Bertrand, & Echallier, 1989). Then, the dominant topographic 

scalp maps were identified in the grand average ERP data (Recognition, One image before, Two 

images before and Three images before) over a wide time-window spanning from 0 to 600ms 

after stimulus presentation. To this end, a specific spatiotemporal clustering algorithm, the 

“Atomize and Agglomerate Hierarchical Clustering” (AAHC; for a detailed description, see 

Murray, Brunet, & Michel, 2008), was used. This clustering method was developed on purpose 

to reduce complex EEG/ERP data sets. Following standard practice, the optimal number of 

dominant maps “explaining” the dataset was based on a cross-validation criterion (Pascual-

Marqui, Michel, & Lehmann, 1995). The dominant scalp topographies (identified in the group-

averaged data) were then fitted to the ERPs of each individual subject using spatial fitting 

procedures, to determine their representation across subjects and conditions. This procedure 

provided fine-grained quantitative values, such as the duration of a specific topographic map or 

its global explained variance (GEV, or goodness of fit), which are critical indices of the 

significance of a given topography, not available otherwise in a classical component analysis 

(Picton et al., 2000). GEV represents the sum of the explained variance weighted by the GFP 

(Global Field Power) at each moment in time. GEV was entered in repeated measures analyses 

of variance (ANOVAs) with image level and emotional content as within-subject factors. Paired 

t-tests (and a conservative Bonferroni correction) were used as post-hoc comparisons between 

conditions. When appropriate, degrees of freedom were corrected using Greenhouse-Geisser 

estimates of sphericity. As for the statistical analysis of the behavioral data, the level of 

significance for all these analyses was set to p < 0.05. 

Source localization analyses 
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To estimate the likely neural sources underlying the electrical field configurations identified 

by the previous analysis, we used a specific distributed linear inverse solution, namely 

standardized low-resolution brain electromagnetic tomography (sLORETA: Pascual-Marqui, 

2002). Mathematical validation of this distributed source localization technique has been recently 

demonstrated (Sekihara, Sahani, & Nagarajan, 2005). The head model for the inverse solution 

uses the electric potential lead field computed with a boundary element method applied to the 

MNI152 template (Fuchs, Kastner, Wagner, Hawes, & Ebersole, 2002). Scalp electrode 

coordinates on the MNI brain are derived from the international 5% system (Jurcak, Tsuzuki, & 

Dan, 2007). The source locations were therefore given as (x, y, z) coordinates (x from left to 

right; y from posterior to anterior; z from inferior to superior). The calculation of all 

reconstruction parameters was based on the computed common average reference. sLORETA 

units were scaled to amperes per square meter (A/m
2
). Direct statistical comparisons between 

conditions were performed in this inverse solution space using paired t-test. The level of 

significance for all the analyses was set to p < 0.05. 

Results 

Accuracy 

Participants were accurate in this task; mean error rate was 12.84% (SD = 5.02). A 3 

(emotion) x 6 (image level) repeated measures ANOVA revealed a highly significant main effect 

of image level [F(5, 108) = 36.09, p < .001, ηp
2 

= .626]. However, there was no evidence of 

either a significant main effect of emotion [F(2, 36) = 0.24, p = .683, ηp
2
 = .013] or an emotion x 

image level interaction [F(10, 180) = 1.33, p = .271, ηp
2
 = .069]. Post-hoc comparisons showed a 

significantly higher percentage of errors during the presentation of Image4 compared to the other 

image levels (all ps < .001), because the majority of responses actually occurred during the 
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presentation of this image level (see below). No significant difference was found between errors 

during Image1 and Image2 (p > .05). Furthermore, the percentage of errors was similar for 

Image1, Image2 and Image6 (all ps > .05). In addition, very few errors were committed with 

catch trials (Image1: M = 0.00, SD = 0.00; Image2: M = 0.00, SD = 0.00; Image3: M = 0.44, SD 

= 1.91; Image4: M = 2.90, SD = 12.62; Image5: M = 5.70, SD = 15.73; Image6: M = 1.05, SD = 

4.59), confirming that participants reliably processed the content of the scene before making a 

response (living vs. non-living object).  

Cumulative percentages of correct responses (i.e. Response1 only when Response2 was 

correct, see Method) are presented in Table 4. A 3 (emotion) x 6 (image level) repeated measures 

ANOVA performed on these values showed a significant main effect of emotion [F(2, 36) = 

39.62, p < .001, ηp
2
 = .688], a significant main effect of image level [F(5, 90) = 637.37, p < .001, 

ηp
2
 = .973] and a significant emotion x image level interaction [F(10, 180) = 21.80, p < .001, ηp

2
 

= .548]. Post-hoc comparisons confirmed a progressive (although non-linear) gain in recognition 

from Image1 to Image6 (all ps < .05, with the exception of Image1 vs. Image2 for pleasant 

stimuli, p > .05), as shown by an S-shaped psychometric function (see Figure 1B). Hence, image 

levels three, four and five presumably provided sufficient diagnostic low and high spatial 

frequency information to perform the animacy judgment task with high accuracy. More 

generally, this S-shaped psychometric function confirmed that our progressive stimulus 

revelation task was successful, since participants did not respond randomly to the different 

filtered stimuli across trials but, instead, they consistently waited at least until Image3 before 

interrupting the stimulus sequence. Importantly, the analysis of the cumulative percentage of 

accuracy of catch trials revealed a similar outcome. A univariate ANOVA disclosed a significant 

main effect of image level [F(5, 108) = 152.88, p < .001, ηp
2
 = .876]. Post-hoc comparisons 
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confirmed a progressive gain in recognition at each image level (all ps < .001, except Image1 vs. 

Image2, p > .05), lending additional support to the assumption that image levels three, four and 

five contained sufficient diagnostic spatial frequency information to perform the task with high 

accuracy. Altogether, these results are consistent with the assumption of non-linear accumulation 

of evidence prior to recognition (Biederman, 1987; Gold & Shadlen, 2007; Ratcliff & McKoon, 

2008; Smith & Ratcliff, 2004). 

Next, we assessed whether the emotional content of the scene may have had an influence on 

the actual recognition of these scenes. To this end, a mixed proportional odds model with 

emotion as fixed factor (neutral, unpleasant or pleasant), and subject as random effect was 

carried out (see Table 5). Interestingly, this analysis suggested a highly significant main effect of 

emotion (p < .001). Pairwise comparisons revealed a shift of the distribution as a function of the 

emotional content of the scene, indicated by reliably earlier animacy judgments when the picture 

contained a neutral, as opposed to either an unpleasant (p < .001) or pleasant (p < .001) content 

(Figure 1B). The psychometric function was also shifted leftwards (i.e. earlier recognition) for 

unpleasant relative to pleasant scenes (p < .001). Hence, these results showed that pleasant 

scenes were recognized significantly later than either unpleasant or neutral scenes.  

Reaction Times 

Finally, we calculated the mean reaction times (RTs) for the correct responses at each image 

level separately (Image1: M = 0.00 ms, SD = 0.00; Image2: M = 133.21 ms, SD = 217.89; 

Image3: M = 476.43 ms, SD = 104.22; Image4: M = 362.00 ms, SD = 54.59; Image5: M = 

288.32 ms, SD = 40.29; Image6: M = 194.18 ms, SD = 105.94) and compared RTs at Image3, 

Image4 and Image5, for which the majority of behavioral responses were recorded. Pairwise 

comparisons revealed significant differences between Image3 and Image4 [t(18) = 4.72, p < 
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.001], Image3 and Image5 [t(18) = 6.98, p < .001] and Image4 and Image5 [t(18) = 5.58, p < 

.001], each time indicated by faster decisions for images levels containing more high spatial 

frequency information than levels providing more degraded visual information. 

ERP results 

Following standard practice, a spatiotemporal cluster analysis was applied on the four main 

ERP conditions (Recognition, One image before, Two images before and Three images before) 

during a broad temporal window following stimulus onset (0-600 ms post-stimulus). This 

analysis revealed that five distinct dominant field topographies explained 91.37% of the total 

variance (see Figure 2A and 2B). The two first dominant maps were common to all four 

conditions, with reliable topographic changes between conditions starting 280 ms post-stimulus 

onset. The first dominant map found in the spatial cluster analysis had a prolonged duration (0-

216 ms post-stimulus onset) and shared several electrophysiological properties with the visual 

N1 component (Figure 2C) (Vogel & Luck, 2000). The fact that this ERP component, which is 

usually phasic, showed here a sustained effect may be explained by our specific task parameters, 

in which degraded stimuli are presented and a progressive accumulation of visual information is 

needed over a prolonged period of time. This N1 scalp map was next replaced by a visual P2 

component (Carretié et al., 2004; Crowley & Colrain, 2004; Freunberger, Klimesch, 

Doppelmayr, & Holler, 2007; Luck & Hillyard, 1994) which, like the preceding N1 scalp map, 

was shared across the four image levels (Figure 2C). The spatiotemporal cluster analysis 

disclosed that the P2 scalp map had the highest variance during the 216-280 ms time interval 

post-stimulus onset. Most likely, these two early neural activities reflected the encoding and low-

level visual discrimination of the stimulus. Following the offset of the P2 scalp map (280 ms 

post-stimulus onset), the cluster analysis unambiguously revealed reliable topographic changes 
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across the four image levels, which are necessarily indicative of changes in the configuration of 

the underlying intracranial generators (Lehmann & Skrandies, 1980; Michel et al., 1999; Murray 

et al., 2008). Whereas another broad occipito-parietal activity was generated following the P2 for 

image levels one, two and three before recognition, a distinctive occipital negative component 

(with a concurrent positive, frontal counterpart) was generated during the same latency for the 

image level corresponding to actual recognition (Figure 2C). Interestingly, this differential scalp 

topography was actually generated during the time period (280-360 ms post-stimulus, 

Recognition level) in which the first decision (Response1) was most likely made by the 

participant. However, since RTs were variable or jittered across trials and participants, as well as 

differed as a function of image level (see behavioral results above), it is unlikely that this 

distinctive scalp map was somehow related only to the preparation or execution of a motor 

response. 

The next step was to verify whether the topographic changes observed across conditions 280 

ms after stimulus onset were reliable. Accordingly, these dominant maps were fitted back to the 

individual ERP data (by using a spatial fitting procedure, as described above) to estimate their 

representation across time and conditions. For this purpose, three different time intervals were 

defined based on the outcome of the spatiotemporal cluster analysis, each lasting 80 ms: a first 

interval around the peak (as defined using the GFP) of the visual N1 map, a second one 

corresponding to the occipital P2 map, and a third one immediately following the P2 map, where 

topographic differences were found by the preceding cluster analysis. For the visual N1 map 

(136-216 ms post-stimulus onset), a univariate ANOVA performed on the GEV values failed to 

reveal any significant difference between the four image levels [F(3, 72) = 0.78, p = .507, ηp
2 

= 

.032], lending support to the assumption that this first occipital map might correspond to the 
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early visual encoding or discrimination of the incoming (blurred) stimulus. For the P2 map (216-

296 ms post-stimulus onset), the univariate ANOVA showed a significant main effect of image 

level [F(3, 72) = 5.04, p = .003, ηp
2 

= .173]. Post-hoc comparisons revealed a selective decrease 

of the global explained variance of this P2 map for the image level corresponding to actual 

recognition, relative to the three other levels (One image before, p = .044; Two images before, p 

= .010; Three image before, p = .008). The other pairwise comparisons remained non-significant 

(all ps > .05). This latter result suggested a substantial decrease of the P2 at the time of 

recognition, which could reflect either the processing of low-level visual properties of the 

stimulus (Luck & Hillyard, 1994) or short-term memory load (Wolach & Pratt, 2001), including 

priming (Gruber & Muller, 2005; Rugg, Soardi, & Doyle, 1995; Wiggs & Martin, 1998). To 

ascertain the presence of a reliable topographic change during the third time interval (280-360 

ms post-stimulus onset), we then submitted the GEV values obtained after fitting during this time 

interval to a 2 (map configuration: occipito-parietal positive activity vs. occipital negative/frontal 

positive activity) x 4 (image level: Recognition, One image before, Two images before, Three 

images before) repeated measures ANOVA. This analysis revealed a main effect of map 

configuration [F(1, 18) = 4.89, p = .040, ηp
2 

= .214], and a highly significant map configuration x 

image level interaction [F(3, 54) = 14.34, p < .001, ηp
2 

= .443], corroborating the assumption of a 

reliable topographic change across the four image levels during this specific time interval, and in 

sharp contrast to the results obtained for the preceding visual N1 and P2 scalp maps. 

Interestingly, post-hoc comparisons showed that the GEV of the occipital negative/frontal 

positive activity progressively increased from three images before recognition to actual 

recognition (see Figure 3A). More specifically, the GEV of this component was found to reliably 

increase when comparing actual recognition to one image before [t(18) = 3.12, p = .006], two 
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images before [t(18) = 2.61, p = .018] and three images before recognition [t(18) = 5.02, p < 

.001]. Similarly, the substantial increase in GEV as a function of the progressive unfolding of the 

scene content was evident when comparing one image to three images before recognition [t(18) 

= 2.56, p = .020], as well as two images to three images before recognition [t(18) = 2.98, p = 

.008]. By comparison, the evolution of the GEV values of the concurrent occipito-parietal 

positive activity over the four image levels showed a different statistical outcome (Figure 3B). T-

tests performed on the GEV values extracted for this topographic activity during the same time 

interval (280-360 ms post-stimulus onset) revealed a significant decrease of the GEV for the 

image level corresponding to actual recognition, relative to one image [t(18) = -4.59, p < .001], 

two images [t(18) = -3.65, p = .002] and three images before recognition [t(18) = -4.50, p < 

.001]. The other pairwise comparisons were not significant. In other words, this significant map 

configuration x image level interaction indicated a reliable change of microstates during this time 

interval, when progressively moving from three images before recognition to actual recognition. 

This topographic change was best explained by a progressive increase of the negative 

occipital/frontal positive activity when moving closer to recognition, whereas the concurrent 

occipito-parietal positive activity was found to be stable for the three first levels but showed a 

sharp decrease at the time corresponding to actual recognition. 

We failed to find any significant modulation of these map configurations and their 

expressions as a function of the emotional content of the scene. We carried out a 2 (map 

configuration) x 3 (emotional content) x 4 (image level) repeated measures ANOVA on the GEV 

values extracted during this time interval (280-360 ms post-stimulus onset) that revealed a 

significant main effect of map configuration [F(1, 18) = 4.89, p = .040, ηp
2 

= .213] and a 

significant map configuration x image level interaction [F(3, 54) = 14.35, p < .001, ηp
2 

= .444], 
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but no significant modulation by the emotional content of the scene. This result suggested that 

these differential neural processes related to visual object recognition were not influenced by the 

emotional content of the scenes. 

Source localization results 

Next, we used sLORETA (Pascual-Marqui, 2002) to gain insight into the likely neural 

generators accounting for the different topographies identified by the previous topographic 

analyses. More specifically, sLORETA was used to explore the brain regions underlying the 

substantial topographic change found in the previous analysis, which concerned the 280-360 ms 

post-stimulus onset interval. Since the change in the electric field configuration was most 

obvious when directly comparing three images before recognition to actual recognition, we first 

used this contrast in the inverse solution space and performed statistical non-parametric mapping 

(SnPM) analyses. For this purpose, amplitude data were first normalized (i.e. total average power 

equal to unity) prior to performing statistical analyses. This procedure revealed a stronger 

activation for recognition compared to three images before recognition in the left dACC (-15x, -

10y, +45z) [t(18) = 4.16, p < .001] and right dACC (+15x, -10y, +45z) [t(18) = 4.50, p < .001], 

extending bilaterally in the supplementary motor area (SMA; left: -25x, -10y, +45z; right: +25x, 

-10y, +45z; t(18) = 4.31, p < .001 and t(18) = 3.01, p = .007, respectively). The reverse contrast 

(Three images before > Recognition) showed larger activations in the bilateral posterior 

cingulate cortex (PCC), extending ventrally in the parahippocampal gyrus (PHG) [left: -15x, -

65y, +10z; right: +15x, -65y, +10z; t(18) = -4.56, p < .001 and t(18) = -2.80, p = .012, 

respectively] (Figure 4A). Next, for each of these regions of interest (ROIs) and each subject 

separately, we extracted the amplitude value (mean amplitude during the 280-360 ms post-

stimulus onset interval) to establish how the activity in these regions actually evolved as a 
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function of time of recognition. A 2 (side: left vs. right hemisphere) x 2 (ROI: dACC vs. 

PCC/PHG) x 4 (image level: Recognition, One image before, Two images before, Three images 

before) repeated measures ANOVA disclosed a significant main effect of ROI [F(1, 18) = 22.61, 

p < .001, ηp
2 

= .557] and a marginally significant effect of image level [F(3, 54) = 2.71, p = .074, 

ηp
2 

= .131] but, more importantly, a significant ROI x image level interaction [F(3, 54) = 14.79, p 

< .001, ηp
2 

= .451]. For the left dACC (Figure 4B), post-hoc comparisons revealed a significantly 

higher activity during actual recognition, relative to one image [t(18) = 5.29, p < .001], two 

images [t(18) = 5.22, p < .001] or three images before recognition [t(18) = 4.90, p < .007]. None 

of the other pairwise comparisons were significant (all ps > .05). Inverse solution results 

obtained for the right dACC showed a very similar outcome: a stronger activity was evidenced 

when comparing actual recognition to one image [t(18) = 5.53, p < .001], two images [t(18) = 

4.09, p = .001] or three images before recognition [t(18) = 4.21, p = .001]. By contrast, statistical 

analyses performed on the amplitude values extracted from the PCC/PHG showed a different 

result, mainly characterized by a linear decrease in activity when moving from three images 

before recognition to actual recognition. For the left PCC/PHG, paired t-tests showed a 

significantly lower activity in this region during actual recognition, relative to two images [t(18) 

= -4.50, p < .001] and three images before recognition [t(18) = -5.04, p < .001]. Significantly 

lower neural activity was also evidenced when comparing one image to two images before 

recognition [t(18) = -2.12, p = .048], one image to three images before recognition [t(18) = -3.39, 

p = .003], and two images to three images before recognition [t(18) = -2.51, p = .022], suggesting 

a linear monotonic decrease of activity in this region as a function of accumulation of perceptual 

evidence (see Figure 4C). The activity extracted in the right PCC/PHG showed a similar trend, 

although attenuated. Statistical analyses revealed significantly higher amplitude during actual 
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recognition compared to three images before recognition [t(18) = -2.31, p = .033]. The same 

effect was evidenced when comparing one image to three images before recognition [t(18) = -

2.19, p = .042]. 

Finally, we verified whether the activity in these ROIs varied with the emotional content of 

the scenes or not. In none of the four ROIs did the ANOVA reveal any significant effect of the 

emotional content of the scene, suggesting that neural processing in these four regions was not 

influenced by the emotional content of the scene during this specific time interval following 

stimulus onset, consistent with the topographic analyses reported here above. 

Discussion 

In this study, we used high density EEG to shed light on the neural events preceding and 

leading to perceptual decision making during a simple/binary visual categorization task (animacy 

judgment). For each trial, participants were presented with series of filtered images that were 

progressively unfolding the content of a complex visual scene, and the participant was asked to 

discriminate whether this scene contained a living object or not. The sequence started with the 

presentation of a blurred image, whose content was increasingly revealed by adding up, in a non-

linear fashion, HSF information, hence providing a temporal decomposition of a “coarse-to-fine” 

analysis of the incoming visual stimulus. Since previous models have emphasized such a 

“coarse-to-fine” analysis subtended by different contributions of low vs. high spatial frequency 

information (Bar, 2004; Bullier, 2001; Hegdé, 2008), this sequential procedure was then 

developed to investigate upstream evidence accumulation processes leading to recognition. In 

addition, the visual scenes were neutral, pleasant or unpleasant, to assess whether their emotional 

content might affect the expression of neural events foreshadowing overt visual object 

recognition. 
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Behavioral results confirmed that this new progressive stimulus revelation task was suited to 

study the temporal dynamic preceding visual object recognition. Participants consistently waited 

for sufficient perceptual evidence before categorizing the incoming visual stimulus as either 

living or non-living with high accuracy. Accurate perceptual decisions (mean % response correct 

> 87) mainly occurred after the presentation of three (spatial filtering: 64-512 pixels/cycle), four 

(32-512 pixels/cycle) or five (16-512 pixels/cycle) images, suggesting systematic accumulation 

of evidence before recognition (see Figure 1B). Consistent with previous studies (Bar, 2004; 

Delplanque et al., 2007; Schyns & Oliva, 1994), these three image levels presumably contained 

adequate diagnostic spatial frequency content to perform the animacy judgment task with high 

accuracy and confidence. Behavioral results obtained for catch trials corroborated the assumption 

that participants did not simply guess about the content of the scene but, instead, they reliably 

accumulated perceptual evidence before making a decision about its content, as shown by 

progressively higher perceptual decisions made during the presentation of the third, fourth and 

fifth image level. Altogether, these behavioral findings are compatible with predictions arising 

from accumulator models of decision making, which directly emphasize the accumulation of 

perceptual evidence in favor of each alternative before a response boundary is surpassed (Gold & 

Shadlen, 2007; Ratcliff & McKoon, 2008).  

Interestingly, our behavioral results also showed reliable differences between the three 

emotion conditions, indicated by earlier recognitions for unpleasant compared to pleasant scenes. 

Although speculative, this effect obtained for negatively-valenced scenes might be consistent 

with a negativity bias effect, as described in the Evaluative Space Model (ESM: Cacioppo, 

Gardner, & Berntson, 1997; Cacioppo, Gardner, & Berntson, 1999; Cacioppo, & Gardner, 1999; 

Norris, Gollan, Berntson, & Cacioppo, 2010). This dominant model makes the assumption of 
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two separable and partially distinct components of the system underlying the evaluation of 

emotion and affect: (1) positivity, sensitive to appetitive stimuli and promoting approaching 

behavior; (2) negativity, oriented towards threat or danger, and fostering avoidance (Cacioppo, & 

Gardner, 1999). These components are characterized by distinctive activation functions, a 

negativity bias (strongly aversive stimuli elicit stronger responses than appetitive ones) and a 

positivity offset (when input to the affect system is minimal, positivity outweighs negativity). 

This negativity bias would lead to slower or diminished responses to non-negative 

(appetitive/pleasant), relative to negative stimuli (Norris, Gollan, Berntson, & Cacioppo, 2010). 

However, because neutral scenes were recognized on average earlier than negative scenes, a 

general negativity bias only does not seem sufficient to account for our behavioral results. 

Alternatively, we cannot rule out the possibility that picture complexity (or stimulus ambiguity) 

might actually be different between pleasant, unpleasant and neutral scenes, a factor that could 

potentially account for the differences in speed of recognition found across these three emotion 

conditions in our task (see Fig. 1B). However, we first aimed at selecting mildly emotional 

pictures from the IAPS, which were balanced regarding the animacy dimension but for which 

clear contrast effects (regarding the valence and arousal dimensions) could be obtained when 

comparing these neutral, pleasant and unpleasant scenes (see Table 1). This selection procedure 

resulted in a limited number of individual scenes for each emotion condition. In this context, we 

could not control for possible low-level visual differences across the three emotion conditions, 

which may eventually influence performance during the animacy judgment task, even though it 

remains unclear if a specific low-level visual property may systematically bias the animacy 

judgments in one direction or the other. Moreover, because the early ERP components (0-200 ms 

post-stimulus onset, including the N1 and P2) were found to be identical across the three emotion 
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conditions, a differential recognition effect across the three emotion categories triggered by 

specific low-level visual properties appears unlikely.   

At the electrophysiological level, we found evidence for the involvement of different brain 

regions that differently contributed to mechanisms of perceptual decision making. More 

specifically, we looked at electrophysiological effects occurring up to three images before 

recognition, and eventually found reliable topographic modulations of the ERP signal in a 

window spanning from 280 to 360 ms after stimulus onset across these four image levels. 

Notably, two different topographic activities showing different evolution over time (see Figure 

3A and 3B) were evidenced. Whereas the explained variance of an occipital negative/frontal 

positive activity linearly increased from three images before recognition until time of recognition 

(Figure 3A), the explained variance of a concurrent broad occipito-parietal positive activity 

remained stable for the different image levels before recognition, but substantially dropped at the 

time of recognition (Figure 3B). On the other hand, we did not find any significant modulation of 

these effects by the emotional content of the scene, suggesting a common visual object 

recognition mechanism for neutral, pleasant and unpleasant pictures during this specific time 

interval. A possible reason may be that our pre-selected IAPS stimuli were only mildly arousing, 

in contrast with many previous studies in literature showing reliable visual ERP effects with 

highly arousing pictures (including the EPN and LPP components, recorded following stimulus 

onset), relative to neutral, or low arousing scenes (Delplanque et al., 2004; Junghöfer, Bradley, 

Elbert, & Lang, 2001; Peyk, Schupp, Keil, Elbert, & Junghöfer, 2009; Schupp, Junghöfer, 

Weike, & Hamm, 2003a; Schupp et al., 2003b; Schupp et al., 2006; Wiens, Peira, Golkar, & 

Ohman, 2008). In addition, given the specific data analysis used in our study, we cannot rule out 
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the possibility that these neural processes might be triggered with some delay for emotional 

compared to neutral pictures, an issue that requires further research. 

Since these topographic changes observed at the scalp level necessarily denote alterations in 

the configuration of the intracranial generators (see Lehmann & Skrandies, 1980; Michel, et al., 

1999; Murray, et al., 2008; Pourtois, et al., 2008), we performed complementary source 

localization analyses to gain insight into the putative configuration of the intracranial generators 

underlying these two specific topographic activities related to visual object recognition. Inverse 

solutions based on sLORETA (Pascual-Marqui, 2002) confirmed a substantial shift in the 

localization of the neural generators underlying these two topographic maps. Comparing three 

images before recognition to time of recognition revealed a highly significant effect (p < .001 

corrected) in the PCC/PHG complex (Broadmann’s areas, BA 29/30). The reverse contrast 

revealed a highly significant (p < .001 corrected) bilateral effect in the dACC (BA 24) (Figure 

4A), with additional effects localized more dorsally, including the SMA bilaterally. This latter 

effect in the SMA might reflect a motor preparation component that preceded or was associated 

with the overt recognition of the scene. While the former regions showed a quasi-linear decrease 

in activation when moving from three images before recognition to actual recognition (see 

Figure 4C), the extracted activity in the latter region showed instead a stable pattern up to the 

image level corresponding to actual recognition, where an abrupt and substantial increase was 

evidenced (see Figure 4B). Hence, distinct effects were found in these two distant regions as a 

function of accumulation evidence processes preceding actual recognition. 

Previous neuroscience studies have linked the PCC, and more specifically its retrosplenial 

portion (BA 29), to the acquisition of visual memory traces (Dickerson & Eichenbaum, 2010; 

Shallice et al., 1994; Valenstein et al., 1987). Moreover, recent studies have advocated this brain 
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region in the formation of canonical representations for typical contexts encountered during 

visual object recognition (Aminoff, Gronau, & Bar, 2007; Bar, 2009; Bar, Aminoff, Mason, & 

Fenske, 2007), whereas the adjacent PHG would primarily be involved in the generation of 

associations related to these contexts (Aminoff et al., 2007; Bar, 2004, 2007; Bar et al., 2006). 

Therefore, these different brain areas might work in concert and form a functional network 

involved in the analysis and generation of contextual information presented together with the 

actual visual object (Bar, 2009). Interestingly, here we found a similar network (involving the 

PCC and PHG) whose activity was found to monotonically decrease when increasing the spatial 

frequency content of the input image, and hence when progressively revealing important 

contextual cues about the object’s identity (see Figure 4C). This effect may therefore reflect the 

processing of diagnostic contextual information (primarily based on LSF information; see Bar, 

2009) needed to optimally categorize the content of the image, and eventually perform the 

animacy judgment task. 

By contrast, source localization results showed the involvement of the bilateral dACC (BA 

24) in our task, although the response profile in this region (see Figure 4B) was reliably different 

compared to the PCC/PHG (Figure 4C). The dACC was primarily found to be active during the 

image level corresponding to the actual recognition of the scene. Activity of the dACC was low 

and stable during the three image levels before recognition, but substantially increased at the 

time of recognition, consistent with its involvement in higher-order decision making processes. 

Various functions have been ascribed to the dACC (Bush, Luu, & Posner, 2000; Ridderinkhof et 

al., 2004), including reward evaluation (Sanfey, Rilling, Aronson, Nystrom, & Cohen, 2003), 

response conflict/competition (Botvinick, 2007; Botvinick, Braver, Barch, Carter, & Cohen, 

2001; Bush et al., 1998), value judgments (Seitz, Franz, & Azari, 2009), error detection 
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(Dehaene, Posner, & Tucker, 1994; Holroyd & Coles, 2002) and reward-based decision making 

(Bush et al., 2002; Hampton & O'Doherty, 2007; Rushworth & Behrens, 2008; Seo & Lee, 2007, 

2009; Watanabe, 2007). A critical function of this region may be the monitoring of choice 

outcomes, with the aim to further adjust sensory acuity in order to improve the organism’s 

response to the environment (Kable & Glimcher, 2009). Recently, the dACC has also been 

thought to be responsible for both preparation and online adjustments in response to conflicts, 

considered either as environmental feedbacks or internally generated signals (Anderson, 

Anderson, Ferris, Fincham, & Jung, 2009; Fincham & Anderson, 2006; Sohn, Albert, Jung, 

Carter, & Anderson, 2007). Given the rather categorical/all-or-nothing response profile found for 

the dACC in our study, this effect may therefore reflect the involvement of this region in 

monitoring the outcome of a decision, which is based in the present case on the rapid and likely 

incomplete accumulation of perceptual evidence. Importantly, here perceptual evidence remains 

partial or incomplete at the time of overt decision (Response 1, see Methods). This situation 

could potentially generate a mild conflict, expressed by the urge to make a rapid decision while 

the actual accumulation of evidence is not complete yet (Hayden, Pearson, & Platt, 2009; 

Sarinopoulos et al., 2010; Scheffers & Coles, 2000). Thus, whereas the PCC/PHG complex may 

be involved in updating contextual information about the scene (based on the rapid extraction 

and accumulation of LSF information; see Bar, 2009), the dACC may contribute to visual object 

recognition mechanisms in this task by monitoring the ongoing decision’s outcome, and serving 

therefore as an important interface between the accumulation of perceptual evidence on the one 

hand, and the implementation and execution of a motor plan on the other hand. The rapid 

acquisition and accumulation of perceptual/contextual evidence taking place in the PCC/PHG 

would lead in turn to the monitoring of the actual decision’s outcome within the dACC, as well 
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as SMA to a smaller degree. This rapid transition might occur by the means of reciprocal 

anatomical connections between these non-overlapping brain regions (Vogt, Finch, & Olson, 

1992).  

Thus, the experimental design and data analyses used here enabled us to track, using a 

millisecond time scale, fast evolving upstream perceptual brain processes eventually leading to 

visual object recognition, whose precise temporal dynamics may be difficult to disclose using the 

BOLD-fMRI technique only, given its sluggish temporal resolution. However, our ERP are also 

complementary to previous fMRI results (see Ploran et al., 2007), as they confirm that non-

overlapping brain regions (i.e. dorsal ACC vs. PCC/PHG) were reliably active prior to visual 

object recognition at different latencies (relative to recognition) and with different response 

profiles, but they also add new critical information about the precise electrophysiological time-

course of these upstream perceptual effects, which primarily concerned an interval spanning 

from 280 to 360 ms post-stimulus onset.  

There are a few restrictions to the present study. First, each visual scene was repeated once 

after a variable and unpredictable time lag, which may have introduced a slight bias in top-down 

recognition brain mechanisms for repetitions, relative to first presentations of the scenes. 

However, our ERP analyses failed to reveal any substantial topographical and source localization 

difference between first presentations and repetitions, suggesting similar accumulation of 

evidence processes in these two conditions (though occurring earlier for repetitions relative to 

first presentations). Although this behavioral advantage in speed of recognition for repetitions 

relative to first presentations does not yield ERP topographic differences in our study, one may 

assume that additional brain processes may underlie this differential effect, even if they were not 

visible in the present case. The use of a more explicit (as opposed to implicit) visual encoding 
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strategy combined with the activation of visual recognition processes based on cues stored in 

memory might help to reveal different top-down recognition processes for first encounters of the 

scenes, compared to repetitions. Another limitation concerns the stimuli selected from the IAPS 

and used in this ERP study. Low-level but uncontrolled differences (e.g. picture complexity, 

stimulus ambiguity) may exist between neutral, pleasant and unpleasant scenes, which could 

possibly influence behavioral performance during the animacy judgment task. We cannot 

exclude the possibility that some of the observed behavioral results (see Fig. 1B) were explained 

by some uncontrolled “low-level” differences between the three emotion categories (neutral, 

pleasant and unpleasant scenes).  

In sum, our new ERP results provide the first direct electrophysiological evidence of upstream 

neural events leading to visual object recognition, highlighting distinct effects in the PCC/PHG 

and dACC during this process rapidly following stimulus onset. Our findings are also in line with 

recent fMRI results showing that these two regions may differentially contribute to mechanisms 

of perceptual decision making (Ploran et al., 2007; Wheeler et al., 2008). In addition, the use of 

high density scalp EEG helped us shed light on the distinctive temporal contributions of these 

two regions during visual object recognition. Whereas the PCC/PHG complex was involved in 

the accumulation of perceptual evidence prior to actual recognition, the dACC was likely 

implicated at a later stage in the monitoring of the decision’s outcome (see also Ploran, et al., 

2007). Future studies are needed to establish whether these two distant regions may exhibit some 

coupling or reciprocal interactions during upstream perceptual processes leading to visual object 

recognition. 
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Footnote 

1
IAPS image codes. WOMEN PICTURE SET: practice (living) 2220, 2635, 4631, 4651, 4669; 

practice (non-living) 7002, 7009, 7161, 7590, 7820; neutral (living) 1616, 2190, 2191, 2381, 

2383, 2385, 2393, 2480, 2495, 2570, 2595, 2749, 2840, 2890, 4250, 4255, 4310, 9070, 3550.2, 

6570.2, 2516, 2702, 8192; neutral (non-living) 6150, 7006, 7010, 7020, 7031, 7035, 7036, 7041, 

7050, 7130, 7160, 7175, 7179, 7185, 7187, 7217, 7233, 7235, 7830, 7950, 7025, 7500, 7705; 

negative (living) 1052, 1201, 1525, 1932, 2276, 2490, 2694, 2715, 2753, 3181, 3300, 4621, 

6311, 9041, 9046, 9331, 9404, 9417, 2055.1, 2900.1, 1274, 9160, 9592; negative (non-living) 

2692, 5971, 6020, 6230, 6241, 6610, 6800, 9000, 9280, 9320, 9340, 9373, 9470, 9471, 9495, 

9611, 9620, 9622, 9630, 9830, 9001, 9290, 9621; positive (living) 1604, 1610, 1721, 2209, 2345, 

4510, 4538, 4572, 4626, 4640, 4660, 5621, 8034, 8041, 8080, 8200, 8370, 8470, 8490, 8496, 

1740, 4531, 8330; positive (non-living) 2791, 5220, 5450, 5480, 5551, 5594, 5600, 5779, 5780, 

5891, 5982, 5994, 7200, 7280, 7350, 7470, 7480, 7545, 7580, 8510, 5300, 7390, 8502. MEN 

PICTURE SET: practice (living) 1112, 2210, 2214, 2393, 3210; practice (non-living) 7030, 

7035, 7050, 7185, 7235; neutral (living) 1101, 1230, 1390, 1935, 1945, 2005, 2220, 2441, 2487, 

2514, 2516, 2690, 2749, 2830, 2870, 4503, 4520, 4532, 9700, 2745.1, 1310, 1321, 2635; neutral 

(non-living) 5390, 5731, 6150, 6800, 7009, 7010, 7020, 7036, 7038, 7041, 7090, 7160, 7161, 

7179, 7184, 7186, 7207, 7211, 7233, 7283, 7002, 7100, 7285; negative (living) 2053, 2095, 

2141, 2710, 2750, 3181, 6243, 6311, 6312, 6315, 6510, 6530, 6821, 6838, 7380, 9250, 9500, 

2352.2, 3550.1, 6570.1, 2683, 2900, 9180; negative (non-living) 6260, 6300, 9000, 9008, 9010, 

9090, 9280, 9290, 9301, 9320, 9340, 9470, 9471, 9600, 9611, 9620, 9630, 9830, 9911, 9912, 

9001, 9360, 9621; positive (living) 1463, 1811, 1999, 2057, 2208, 2209, 2216, 4001, 4599, 4641, 

4653, 4656, 4676, 4681, 4689, 4810, 8116, 8120, 8200, 8496, 1460, 2340, 8470; positive (non-
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living) 5260, 5270, 5480, 5594, 5600, 5660, 5700, 5760, 5780, 5910, 5982, 7200, 7230, 7270, 

7330, 7480, 7580, 8170, 8502, 8510, 7260, 7350, 7470. 
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Figure caption 

Figure 1: (A) Example of stimuli, and progressive unfolding task. Neutral, unpleasant and 

pleasant IAPS scenes (not shown here for copyright reasons) were presented to participants in 

random order. For each trial, the content of the scene was progressively revealed in six 

successive steps by adding high spatial frequency information to the initial blurred (meaningless) 

picture. Each image level was presented for 500 ms, followed by a 250ms blank screen. 

Participants were required to press the spacebar key as soon as they could decide whether the 

scene contained a living object or not, thereby interrupting the sequence (Response1). Next, they 

validated their response choice by pressing one out of two pre-defined response keys 

(Response2). (B) Cumulative percentages of correct Response1 as a function of the six image 

levels, separately for each emotion category. Vertical bars correspond to standard errors of the 

means. The results showed that participants were able to make the animacy judgment task 

reliably earlier (i.e. less perceptual evidence needed) for neutral (solid line), relative to 

unpleasant (dotted line) or pleasant (dashed line) scenes. The shift of the psychometric function 

for unpleasant compared to pleasant scenes was also significant (see behavioral results). 

 

Figure 2: (A) Grand-average (N = 19) ERP waveforms (obtained for the image level 

corresponding to actual recognition) for the 128 electrodes (butterfly). The red dashed vertical 

line indicates the onset of the visual stimulus. Clear exogenous N1 and P2 ERP components were 

recorded after stimulus onset. (B) Results of the spatiotemporal cluster analysis (from stimulus 

onset until 600 ms after stimulus onset) for the four main conditions (Recognition, One image 

before, Two images before and Three images before recognition). A main solution with five 

dominant topographic maps was found to explain > 90% of the variance. Scalp topographies of 
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the N1 and P2 were shared across the four conditions, suggesting a similar low-level encoding 

and processing of the visual stimulus. By contrast, starting 280 ms after stimulus onset, reliable 

topographic alterations were found between the four image levels. Whereas a broad occipito-

parietal activity was generated following the P2 for all the image levels preceding recognition (in 

red), a distinctive occipital negative component (with a concurrent positive, frontal counterpart) 

was generated at the same latency for the image level corresponding to actual recognition (in 

green). (C) Horizontal, frontal and occipital views of the five dominant maps (including the N1 

and P2) found in the spatial cluster analysis. Amplitude differences were normalized (i.e. the 

amplitude value at each electrode was divided by the GFP). 

 

Figure 3: (A) Statistical results (* p < .05; ** p < .01; *** p < .001; vertical bars correspond to 

standard errors of the means), obtained after the fitting procedure, for the dominant topography 

characterized by an occipital negativity and a frontal positivity showed a linear increase when 

moving closer to recognition. The Global Explained Variance (GEV, arbitrary units) was 

computed during an 80ms time interval (280-360 ms post-stimulus onset) and is presented 

separately for the four conditions. This analysis showed a linear increase of the GEV when 

moving from three images before recognition to actual recognition. (B) Results obtained for the 

concurrent topography of the occipito-parietal positivity identified during the same time interval. 

Unlike the occipital negative/frontal positive activity, this scalp configuration showed an abrupt 

decrease for the image level corresponding to recognition, relative to the three preceding images 

levels where the variance remained stable. 
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Figure 4: Source localization results. (A) Comparing actual recognition to three images before 

recognition during the 280-360 ms post-stimulus onset interval disclosed a highly significant 

effect (p < .001 corrected) in the dorsal ACC, bilaterally (±15x, +10y, +45z). The reverse 

contrast revealed a highly significant effect (p < .001 corrected) in the posterior cingulate cortex, 

extending ventrally towards the parahippocampal gyrus (±15x, -65y, +10z). A: anterior; P: 

posterior; L: left; R: right. (B) Mean activity extracted from the left dorsal ACC as a function of 

image level (* p < .05; ** p < .01; *** p < .001). Vertical bars correspond to standard errors of 

the means. In this dorsal ACC region, a sharp increase was found for recognition, relative to the 

three preceding levels. (C) By contrast, in the left PPC, a monotonic linear decrease of activity 

was evidenced when moving towards recognition. 
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Table 1 

Mean values and standard deviations (in parenthesis) of valence and arousal scores of the 

selected IAPS pictures 

Picture set Valence Arousal 

Men 

  Neutral 5.12 (1.29) 3.90 (1.88) 

Unpleasant 3.12 (1.62) 4.93 (2.14) 

Pleasant 7.31 (1.57) 5.27 (2.30) 

Women 

  Neutral 4.96 (1.30) 3.34 (1.96) 

Unpleasant 2.75 (1.62) 5.27 (2.19) 

Pleasant 7.31 (1.60) 4.92 (2.37) 

Note. Scores range from 1 to 9. Independent samples t-test confirmed no significant difference 

between women’s and men’s picture sets, both for valence [t(274) = -0.31, p = .760] and arousal 

[t(274) = -1.18, p = .238] scores. In addition, no difference was found between pictures 

containing living [valence: t(136) = 0.10, p = .920; arousal: t(136) = -0.71, p = .478] and non-

living [valence: t(136) = -0.54, p = .590; arousal: t(136) = -1.01, p = .315] objects. 

  

4. Table
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Table 2 

The six frequency bands used to filter the IAPS images selected in our study 

Image Level 
Frequency Band 

 (pixels/cycle) 
 

1 256-512  LSF 

2 128-512  

 

3 64-512  

4 32-512  

5 16-512  



Note. HSF: high spatial frequencies; LSF: low spatial frequencies. 
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Table 3 

Mean values and standard deviations (in parenthesis) of the scores obtained for each 

questionnaire (and relative subscales) administered at the end of the experiment 

Questionnaire Score 

STAI-T 35.58 (8.73) 

NFCS 3.57 (0.60) 

Order 3.83 (0.83) 

Predictability 3.51 (1.07) 

Decisiveness 3.56 (0.60) 

Ambiguity 3.75 (0.80) 

Closedmindedness 3.12 (0.50) 

NFAS 3.71 (0.55) 

Approach 4.27 (0.77) 

Avoidance 3.15 (1.28) 

Note. STAI-T: State-Trait Anxiety Inventory, trait version; NFCS: Need for Closure Scale; 

NFAS: Need for Affect Scale. STAI-T scores range from 20 to 80; NFCS and NFAS use a Likert 

scale of 6 and 7 points, respectively. 
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Table 4 

Mean values and standard deviations (in parenthesis) of cumulative percentages of correct 

responses, separately for each image level and emotional valence 

Image Level Neutral Unpleasant Pleasant 

1 0.07 (0.29) 0.00 (0.00) 0.00 (0.00) 

2 3.53 (4.61) 2.74 (4.58) 1.06 (2.79) 

3 34.96 (15.32) 31.70 (16.85) 22.67 (16.41) 

4 79.71 (15.23) 71.98 (16.74) 66.66 (15.94) 

5 94.65 (7.02) 92.95 (7.23) 92.28 (4.95) 

6 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 
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Table 5 

Results of the mixed proportional odds model (behavioral results) 

Comparison Odds Ratio (95% CI) p-value 

Neutral vs. Unpleasant 1.41 (1.21, 1.63) < .001 

Neutral vs. Pleasant 2.01 (1.74, 2.33) < .001 

Unpleasant vs. Pleasant 1.43 (1.23, 1.66) < .001  

Note. An odds ratio larger than 1 (smaller than 1, respectively) implies that the probability of 

recognition at earlier level is higher (smaller, respectively) for the first versus the second 

condition in the comparison. 
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