Bone Fragility in Diabetes

Further understanding of the fundamental mechanisms underlying bone fragility in diabetes will ultimately improve therapeutic approaches to prevent fractures in this high-risk population.

RESEARCH AIMS

In our research group, we use biochemistry, cell culture, mouse genetics, and human cohorts to study the pathophysiology of diabetes-induced bone fragility. Osteocytes, the long-lived cells residing within the bone matrix, orchestrate bone modelling and remodelling in response to mechanical loading and hormones. Recent findings suggest that osteocyte functions are defective in type 1 (T1D) and type 2 diabetes (T2D). Therefore, we are currently investigating the roles of insulin signalling in osteocytes in the context of T1D (Akita mice) and T2D (mice subjected to a high-fat diet + streptozotocin regimen). In addition, we are exploring how reduced autophagy, altered mitochondria-associated endoplasmic reticulum membranes, and excessive PDGFRβ signalling in osteocytes contribute to the pathogenesis of T2D-induced bone fragility (HFD + STZ). Finally, we use proteomic analyses of sera obtained from a cohort of patients with metabolic syndrome and T2D to identify novel markers of T2D-induced bone fragility.

CORE EXPERTISE

Mouse models:

  • Akita^mut/mut (T1D)

  • High-fat diet (T2DM)

  • SerpinF1 KO + HFD (Pigment epithelium-derived factor, microvascularisation)

  • High-fat diet + STZ

  • Db/Db (T2DM)

  • Atg7^lox/lox (autophagy)

  • Dmp1-Cre (osteocytes)

  • Igf1rflox/flox; Insrflox/flox (insulin signalling)

Bone investigation techniques:

  • Histology: Calcified tissue histology (methyl methacrylate embedding), immunohistology (cryo-histology, paraffin embedding)

  • Bone imaging: Micro-computed tomography (Viva-CT Scanco)

  • Bone biomechanical resistance testing (Instron)

  • Bone matrix quality properties (nano-indentation)

SELECTED PUBLICATIONS

  1. Ferrari S, Betah D, Feldman RG, Langdahl BL, Oates M, Timoshanko J, Wang Z, Dhaliwal R. Romosozumab Improves Tissue Thickness-Adjusted Trabecular Bone Score in Women With Osteoporosis and Diabetes. J Clin Endocrinol Metab. 2025 Jan 24;dgae862. doi:10.1210/clinem/dgae862. Online ahead of print. PMID: 39854280.
  2. Meier C, Eastell R, Pierroz DD, Lane NE, Al-Daghri N, Suzuki A, Napoli N, Mithal A, Chakhtoura M, El-Hajj Fuleihan G, Ferrari S. Biochemical Markers of Bone Fragility in Patients with Diabetes. A Narrative Review by the IOF and the ECTS. J Clin Endocrinol Metab. 2023 May 8;dgad255. doi:10.1210/clinem/dgad255. PMID: 37155585
  3. Hofbauer LC, Busse B, Eastell R, Ferrari S, Frost M, Müller R, Burden AM, Rivadeneira F, Napoli N, Rauner M. Bone fragility in diabetes: novel concepts and clinical implications. Lancet Diabetes Endocrinol. 2022 Mar;10(3):207–220. doi:10.1016/S2213-8587(21)00302-3. PMID: 35101185
  4. Bonnet N, Bourgoin L, Biver E, Douni E, Ferrari S. RANK Ligand inhibition improves muscle strength and insulin sensitivity concomitant to bone mass restoration. J Clin Invest. 2019 Aug 1;129(8):3214–3223. doi:10.1172/JCI126650. PMID: 31120440
  5. Ferrari SL, Abrahamsen B, Napoli N, Akesson K, Chandran M, Eastell R, El-Hajj Fuleihan G, Josse R, Kendler DL, Kraenzlin M, Suzuki A, Pierroz DD, Schwartz AV, Leslie WD. Diagnosis and management of bone fragility in diabetes: an emerging challenge. Osteoporos Int. 2018 Dec;29(12):2585–2596. doi:10.1007/s00198-018-4701-5. PMID: 30066131​​​​
3 Jul 2025

Type 1 Diabetes